Search tips
Search criteria

Results 1-6 (6)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Brain Research Bulletin  2012;87(6):571-578.
Huntington’s disease (HD) is a progressive neurodegenerative disease characterized by progressive atrophy of the striatum, cerebral cortex, and white matter tracks. Major pathological hallmarks of HD include neuronal loss, primarily in the striatum, and dendritic anomalies in surviving striatal neurons. Although many mouse models of HD have been generated, their success at reproducing all pathological features of the disease is not fully known. Previously, we demonstrated extensive striatal neuronal loss and striatal atrophy at 20–26 months of age in a knock-in (KI) mouse model of HD. To further investigate this model, which carries a human exon 1 with ~119 CAG repeats inserted into the mouse gene (initially 140 repeats), we have examined whether these mice exhibit the atrophy and neuronal anomalies characteristic of HD. Stereological analyses revealed no changes in the striatal volume of male and female homozygote mice at 4 months, however striatal atrophy was already present at 12 months in both sexes. Analysis of cortical and corpus callosum volume in male homozygotes revealed a loss in corpus callosum volume by 20–26 months. At this later age, the surviving striatal neurons displayed extensive loss of spines in distal branch orders that affected both immature and mature spines. Mirroring late stage HD striatal neuronal morphology, the striatal neurons at this late age also showed reduced dendritic complexity, as revealed by Sholl analysis. Tyrosine hydroxylase immunoreactivity was also decreased in the striatum of 20–26 month old KI mice, suggesting an alteration in striatal inputs. These data further indicate that CAG140 homozygote KI mice exhibit HD-like pathological features and are a useful model to test the effects of early and/or sustained administration of novel neuroprotective treatments.
PMCID: PMC3319635  PMID: 22326483
Golgi stain; stereology; volume; huntingtin; cortex; corpus callosum
2.  Evidence for behavioral benefits of early dietary supplementation with CoEnzymeQ10 in a slowly progressing mouse model of Huntington’s disease 
Controversies surround the usefulness of Coenzyme Q10 (CoQ10) in Huntington’s disease (HD), an autosomal dominant, fatal, neurodegenerative disease with no cure or disease modifying treatment. CoQ10, an endogenous substrate for electron transport and an anti-oxidant, has been shown in some but not all studies to improve symptoms and survival in mouse models of HD. Previous studies have been conducted in fast progressing models that better mimic the juvenile forms of HD than the much more common middle-age onset form, possibly accounting for mixed results. Establishing the usefulness of CoQ10 to alter HD disease course in a model that better recapitulates the progressive features of the human disorder is important because clinical trials of CoQ10, which is safe and well tolerated, are being planned in patients. The CAG140 knock-in (KI) mouse model of HD in which an expanded (approximately 120) CAG repeat is inserted in the mouse gene provides a model of the mutation in the proper genomic and protein context. These mice display progressive motor, cognitive and emotional anomalies, transcriptional disturbances and late striatal degeneration. Homozygote mutant CAG140 KI mice and wild-type littermates were fed CoQ10 (0.2%, 0.6%) in chow, and behavioral and pathological markers of disease were examined. CoQ10 improved early behavioral deficits and normalized some transcriptional deficits without altering huntingtin aggregates in striatum. The lower dose (0.2%) was more beneficial than 0.6%. Similar to previous studies, this low dose also induced deleterious effects in open field and rotarod in WT mice, however these effects are of unclear clinical significance in view of the excellent safety profile of CoQ10 in humans. These data confirm that CoQ10 may be beneficial in HD but suggest that maximum benefit may be observed when treatment is begun at early stages of the disease and that dosage may be critical.
PMCID: PMC3278578  PMID: 22044764
Behavior; neurodegenerative; huntingtin; anti-oxidant; therapeutic; neuropathology
3.  Improvement of neuropathology and transcriptional deficits in CAG 140 knock-in mice supports a beneficial effect of dietary curcumin in Huntington's disease 
No disease modifying treatment currently exists for Huntington's disease (HD), a fatal neurodegenerative disorder characterized by the formation of amyloid-like aggregates of the mutated huntingtin protein. Curcumin is a naturally occurring polyphenolic compound with Congo red-like amyloid binding properties and the ability to cross the blood brain barrier. CAG140 mice, a knock-in (KI) mouse model of HD, display abnormal aggregates of mutant huntingtin and striatal transcriptional deficits, as well as early motor, cognitive and affective abnormalities, many months prior to exhibiting spontaneous gait deficits, decreased striatal volume, and neuronal loss. We have examined the ability of life-long dietary curcumin to improve the early pathological phenotype of CAG140 mice.
KI mice fed a curcumin-containing diet since conception showed decreased huntingtin aggregates and increased striatal DARPP-32 and D1 receptor mRNAs, as well as an amelioration of rearing deficits. However, similar to other antioxidants, curcumin impaired rotarod behavior in both WT and KI mice and climbing in WT mice. These behavioral effects were also noted in WT C57Bl/6 J mice exposed to the same curcumin regime as adults. However, neither locomotor function, behavioral despair, muscle strength or food utilization were affected by curcumin in this latter study. The clinical significance of curcumin's impairment of motor performance in mice remains unclear because curcumin has an excellent blood chemistry and adverse event safety profile, even in the elderly and in patients with Alzheimer's disease.
Together with this clinical experience, the improvement in several transgene-dependent parameters by curcumin in our study supports a net beneficial effect of dietary curcumin in HD.
PMCID: PMC3348060  PMID: 22475209
Huntingtin aggregates; Open field; Climbing; Pole task; Rotarod; Grip strength; Striatal mRNA transcripts; Preclinical therapeutic trial
4.  Rescuing the Corticostriatal Synaptic Disconnection in the R6/2 Mouse Model of Huntington’s Disease: Exercise, Adenosine Receptors and Ampakines 
PLoS Currents  2010;2:RRN1182.
In the R6/2 mouse model of Huntington’s disease (HD) we examined the effects of a number of behavioral and pharmacological manipulations aimed at rescuing the progressive loss of synaptic communication between cerebral cortex and striatum. Two cohorts of transgenic mice with ~110 and 210 CAG repeats were utilized. Exercise prevented the reduction in striatal medium-sized spiny neuron membrane capacitance but did not reestablish synaptic communication. Activation of adenosine A2A type receptors renormalized postsynaptic activity to some extent. Finally, the ampakine Cx614, which has been shown to prevent α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor desensitization, slow deactivation, and facilitate glutamate release, induced significant increases in synaptic activity, albeit the effect was somewhat reduced in fully symptomatic, compared to control mice. With some limitations, each of these strategies can be used to delay and partially rescue phenotypic progression of HD in this model.
PMCID: PMC2945295  PMID: 20877458
5.  Adipose tissue dysfunction tracks disease progression in two Huntington's disease mouse models 
Human Molecular Genetics  2009;18(6):1006-1016.
In addition to the hallmark neurological manifestations of Huntington's disease (HD), weight loss with metabolic dysfunction is often observed in the later stages of disease progression and is associated with poor prognosis. The mechanism for weight loss in HD is unknown. Using two mouse models of HD, the R6/2 transgenic and CAG140 knock-in mouse strains, we demonstrate that adipose tissue dysfunction is detectable at early ages and becomes more pronounced as the disease progresses. Adipocytes acquire a ‘de-differentiated’ phenotype characterized by impaired expression of fat storage genes. In addition, HD mice exhibit reduced levels of leptin and adiponectin, adipose tissue-derived hormones that regulate food intake and glucose metabolism. Importantly, some of these changes occur prior to weight loss and development of some of the characteristic neurological symptoms. We demonstrate that impaired gene expression and lipid accumulation in adipocytes can be recapitulated by expression of an inducible mutant huntingtin transgene in an adipocyte cell line and that mutant huntingtin inhibits transcriptional activity of the PGC-1α co-activator in adipocytes, which may contribute to aberrant gene expression. Thus, our findings indicate that mutant huntingtin has direct detrimental effects in cell types other than neurons. The results also indicate that circulating adipose-tissue-derived hormones may be accessible markers for HD prognosis and progression and suggest that adipose tissue may be a useful therapeutic target to improve standard of life for HD patients.
PMCID: PMC2649017  PMID: 19124532
6.  Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in Knock-in Huntington’s disease mice 
Neuroscience  2008;157(1):280-295.
Huntington’s disease is a neurodegenerative disorder, caused by an elongation of CAG repeats in the huntingtin gene. Mice with an insertion of an expanded polyglutamine repeat in the mouse huntingtin gene (knock-in mice) most closely model the disease because the mutation is expressed in the proper genomic and protein context. However, few knock-in mouse lines have been extensively characterized and available data suggest marked differences in the extent and time course of their behavioral and pathological phenotype. We have previously described behavioral anomalies in the open field as early as 1 month of age, followed by the appearance at 2 months of progressive huntingtin neuropathology, in a mouse carrying a portion of human exon 1 with approximately 140 CAG repeats inserted into the mouse huntingtin gene. Here we extend these observations by showing that early behavioral anomalies exist in a wide range of motor (climbing, vertical pole, rotarod, and running wheel performance) and non-motor functions (fear conditioning and anxiety) starting at 1–4 months of age, and are followed by progressive gliosis and decrease in DARPP32 (12 months) and a loss of striatal neurons at 2 years. At this age, mice also present striking spontaneous behavioral deficits in their home cage. The data show that this line of knock-in mice reproduces canonical characteristics of Huntington’s disease, preceded by deficits which may correspond to the protracted pre-manifest phase of the disease in humans. Accordingly, they provide a useful model to elucidate early mechanisms of pathophysiology and the progression to overt neurodegeneration.
PMCID: PMC2665298  PMID: 18805465
climbing; running wheel; psychiatric; atrophy; gliosis; DARPP-32

Results 1-6 (6)