PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (52)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Nuclear Lamins and Neurobiology 
Molecular and Cellular Biology  2014;34(15):2776-2785.
Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called “laminopathies,” mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low—due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why “prelamin A diseases” such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.
doi:10.1128/MCB.00486-14
PMCID: PMC4135577  PMID: 24842906
2.  Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2 
Molecular Biology of the Cell  2014;25(10):1666-1675.
To assess the redundancy of lamins B1 and B2, knock-in lines were created that produce lamin B2 from the Lmnb1 locus and lamin B1 from the Lmnb2 locus. Both lines developed severe neurodevelopmental abnormalities, indicating that the abnormalities elicited by the loss of one B-type lamin cannot be prevented by increased synthesis of the other.
Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated “reciprocal knock-in mice”—mice that make lamin B2 from the Lmnb1 locus (Lmnb1B2/B2) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2B1/B1). Lmnb1B2/B2 mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1B2/B2 mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2B1/B1 mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.
doi:10.1091/mbc.E14-01-0683
PMCID: PMC4019497  PMID: 24672053
3.  GPIHBP1 and the intravascular processing of triglyceride-rich lipoproteins 
Journal of internal medicine  2012;272(6):528-540.
Lipoprotein lipase (LPL) is produced by parenchymal cells, mainly adipocytes and myocytes, but its role in hydrolyzing triglycerides in plasma lipoproteins occurs at the capillary lumen. For decades, the mechanism by which LPL reached its site of action in capillaries was unclear, but this mystery was recently solved. GPIHBP1, a GPI-anchored protein of capillary endothelial cells, picks up LPL from the interstitial spaces and shuttles it across endothelial cells to the capillary lumen. When GPIHBP1 is absent, LPL is mislocalized to the interstitial spaces, leading to severe hypertriglyceridemia. Some cases of hypertriglyceridemia in humans are caused by GPIHBP1 mutations that interfere with GPIHBP1's ability to bind LPL, and some are caused by LPL mutations that impair LPL's ability to bind to GPIHBP1. This review will cover recent progress in understanding GPIHBP1's role in health and disease and will discuss some remaining mysteries surrounding the processing of triglyceride-rich lipoproteins.
doi:10.1111/joim.12003
PMCID: PMC3940157  PMID: 23020258
hypertriglyceridemia; chylomicronemia; GPIHBP1; lipoprotein lipase; endothelial cells; lymphocyte antigen 6 proteins
4.  Nuclear lamins in the brain—new insights into function and regulation 
Molecular neurobiology  2012;47(1):290-301.
The nuclear lamina is an intermediate filament meshwork composed largely of four nuclear lamins—lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Located immediately adjacent to the inner nuclear membrane, the nuclear lamina provides a structural scaffolding for the cell nucleus. It also interacts with both nuclear membrane proteins and the chromatin and is thought to participate in many important functions within the cell nucleus. Defects in A-type lamins cause cardiomyopathy, muscular dystrophy, peripheral neuropathy, lipodystrophy, and progeroid disorders. In contrast, the only bona fide link between the B-type lamins and human disease is a rare demyelinating disease of the central nervous system—adult-onset autosomal-dominant leukoencephalopathy, caused by a duplication of the gene for lamin B1. However, this leukoencephalopathy is not the only association between the brain and B-type nuclear lamins. Studies of conventional and tissue-specific knockout mice have demonstrated that B-type lamins play essential roles in neuronal migration in the developing brain and in neuronal survival. The importance of A-type lamin expression in the brain is unclear, but it is intriguing that the adult brain preferentially expresses lamin C rather than lamin A, very likely due to microRNA-mediated removal of prelamin A transcripts. Here, we review recent studies on nuclear lamins, focusing on the function and regulation of the nuclear lamins in the central nervous system.
doi:10.1007/s12035-012-8350-1
PMCID: PMC3538886  PMID: 23065386
Nuclear lamina; brain development; A-type lamins; B-type lamins; differential gene expression
5.  Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis 
Inducible Degrader Of the Low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase that mediates the ubiquitination and degradation of the low-density lipoprotein receptor (LDLR). IDOL expression is controlled at the transcriptional level by the cholesterol-sensing nuclear receptor LXR. In response to rising cellular sterol levels, activated LXR induces IDOL production, thereby limiting further uptake of exogenous cholesterol through the LDLR pathway. The LXR–IDOL–LDLR mechanism for feedback inhibition of cholesterol uptake is independent of and complementary to the SREBP pathway. Since the initial description of the LXR–IDOL pathway, biochemical studies have helped to define the structural basis for both IDOL target recognition and LDLR ubiquitin transfer. Recent work has also suggested links between IDOL and human lipid metabolism.
doi:10.1161/ATVBAHA.112.250571
PMCID: PMC4280256  PMID: 22936343
6.  Palmoplantar keratoderma along with neuromuscular and metabolic phenotypes in Slurp1-deficient mice 
Mutations in SLURP1 cause mal de Meleda, a rare palmoplantar keratoderma (PPK). SLURP1 is a secreted protein that is expressed highly in keratinocytes but has also been identified elsewhere (e.g., spinal cord neurons). Here, we examined Slurp1-deficient mice (Slurp1−/−) created by replacing exon 2 with β-gal and neo cassettes. Slurp1−/− mice developed severe PPK characterized by increased keratinocyte proliferation, an accumulation of lipid droplets in the stratum corneum, and a water barrier defect. In addition, Slurp1−/− mice exhibited reduced adiposity, protection from obesity on a high-fat diet, low plasma lipid levels, and a neuromuscular abnormality (hind limb clasping). Initially, it was unclear whether the metabolic and neuromuscular phenotypes were due to Slurp1 deficiency because we found that the targeted Slurp1 mutation reduced the expression of several neighboring genes (e.g., Slurp2, Lypd2). We therefore created a new line of knockout mice (Slurp1X−/− mice) with a simple nonsense mutation in exon 2. The Slurp1X mutation did not reduce the expression of adjacent genes, but Slurp1X−/− mice exhibited all of the phenotypes observed in the original line of knockout mice. Thus, Slurp1 deficiency in mice elicits metabolic and neuromuscular abnormalities in addition to PPK.
doi:10.1038/jid.2014.19
PMCID: PMC4214150  PMID: 24499735
7.  Investigating the purpose of prelamin A processing 
Nucleus  2011;2(1):4-9.
Lmna yields two major protein products in somatic cells, lamin C and prelamin A. Mature lamin A is produced from prelamin A by four posttranslational processing steps—farnesylation of a carboxyl-terminal cysteine, release of the last three amino acids of the protein, methylation of the farnesylcysteine, and the endoproteolytic release of the carboxyl-terminal 15 amino acids of the protein (including the farnesylcysteine methyl ester). Although the posttranslational processing of prelamin A has been conserved in vertebrate evolution, its physiologic significance remains unclear. Here we review recent studies in which we investigated prelamin A processing with Lmna knock-in mice that produce exclusively prelamin A (LmnaPLAO), mature lamin A (LmnaLAO) or nonfarnesylated prelamin A (LmnanPLAO). We found that the synthesis of lamin C is dispensable in laboratory mice, that the direct production of mature lamin A (completely bypassing all prelamin A processing) causes no discernable pathology in mice, and that exclusive production of nonfarnesylated prelamin A leads to cardiomyopathy.
doi:10.4161/nucl.2.1.13723
PMCID: PMC3104803  PMID: 21647293
prelamin A; progeria; restrictive dermopathy; protein farnesylation; cardiomyopathy
8.  Treatment with a Farnesyltransferase Inhibitor Improves Survival in Mice with a Hutchinson-Gilford Progeria Syndrome Mutation 
Biochimica et biophysica acta  2007;1781(1-2):36-39.
Summary
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid syndrome characterized by multiple aging-like disease phenotypes. We recently reported that a protein farnesyltransferase inhibitor (FTI) improved several disease phenotypes in mice with a HGPS mutation (LmnaHG/+). Here, we investigated the impact of an FTI on the survival of LmnaHG/+ mice. The FTI significantly improved the survival of both male and female LmnaHG/+ mice. Treatment with the FTI also improved body weight curves and reduced the number of spontaneous rib fractures. This study provides further evidence for a beneficial effect of an FTI in HGPS.
doi:10.1016/j.bbalip.2007.11.003
PMCID: PMC2266774  PMID: 18082640
progeria; aging; protein farnesyltransferase inhibitor; knock-in mice
9.  Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution 
Biochimica et biophysica acta  2007;1771(12):1464-1468.
Summary
GPIHBP1 is an endothelial cell protein that serves as a platform for lipoprotein lipase–mediated processing of triglyceride-rich lipoproteins within the capillaries of heart, adipose tissue, and skeletal muscle. The absence of GPIHBP1 causes severe chylomicronemia. A hallmark of GPIHBP1 is the ability to bind lipoprotein lipase, chylomicrons, and apolipoprotein (apo-) AV. A homozygous G56R mutation in GPIHBP1 was recently identified in two brothers with chylomicronemia, and the authors of that study suggested that the G56R substitution was responsible for the hyperlipidemia. In this study, we created a human GPIHBP1 expression vector, introduced the G56R mutation, and tested the ability of the mutant GPIHBP1 to reach the cell surface and bind lipoprotein lipase, chylomicrons, and apo-AV. Our studies revealed that the G56R substitution did not affect the ability of GPIHBP1 to reach the cell surface, nor did the amino acid substitution have any discernible effect on the binding of lipoprotein lipase, chylomicrons, or apo-AV.
doi:10.1016/j.bbalip.2007.10.005
PMCID: PMC2266775  PMID: 17997385
chylomicronemia; GPIHBP1; hypertriglyceridemia; apolipoprotein AV; lipoprotein lipase
10.  Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated 
The Journal of Clinical Investigation  2008;118(10):3291-3300.
Hutchinson-Gilford progeria syndrome (HGPS), a rare disease that results in what appears to be premature aging, is caused by the production of a mutant form of prelamin A known as progerin. Progerin retains a farnesyl lipid anchor at its carboxyl terminus, a modification that is thought to be important in disease pathogenesis. Inhibition of protein farnesylation improves the hallmark nuclear shape abnormalities in HGPS cells and ameliorates disease phenotypes in mice harboring a knockin HGPS mutation (LmnaHG/+). The amelioration of disease, however, is incomplete, leading us to hypothesize that nonfarnesylated progerin also might be capable of eliciting disease. To test this hypothesis, we created knockin mice expressing nonfarnesylated progerin (LmnanHG/+). LmnanHG/+ mice developed the same disease phenotypes observed in LmnaHG/+ mice, although the phenotypes were milder, and mouse embryonic fibroblasts (MEFs) derived from these mice contained fewer misshapen nuclei. The steady-state levels of progerin in LmnanHG/+ MEFs and tissues were lower, suggesting a possible explanation for the milder phenotypes. These data support the concept that inhibition of protein farnesylation in progeria could be therapeutically useful but also suggest that this approach may be limited, as progerin elicits disease phenotypes whether or not it is farnesylated.
doi:10.1172/JCI35876
PMCID: PMC2525700  PMID: 18769635
11.  A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation 
The Journal of Clinical Investigation  2006;116(8):2115-2121.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by the production of a truncated prelamin A, called progerin, which is farnesylated at its carboxyl terminus. Progerin is targeted to the nuclear envelope and causes misshapen nuclei. Protein farnesyltransferase inhibitors (FTI) mislocalize progerin away from the nuclear envelope and reduce the frequency of misshapen nuclei. To determine whether an FTI would ameliorate disease phenotypes in vivo, we created gene-targeted mice with an HGPS mutation (LmnaHG/+) and then examined the effect of an FTI on disease phenotypes. LmnaHG/+ mice exhibited phenotypes similar to those in human HGPS patients, including retarded growth, reduced amounts of adipose tissue, micrognathia, osteoporosis, and osteolytic lesions in bone. Osteolytic lesions in the ribs led to spontaneous bone fractures. Treatment with an FTI increased adipose tissue mass, improved body weight curves, reduced the number of rib fractures, and improved bone mineralization and bone cortical thickness. These studies suggest that FTIs could be useful for treating humans with HGPS.
doi:10.1172/JCI28968
PMCID: PMC1513052  PMID: 16862216
12.  Prelamin A and lamin A appear to be dispensable in the nuclear lamina 
Journal of Clinical Investigation  2006;116(3):743-752.
Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C–only mice (Lmna+/+), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna+/+ mice were entirely healthy, and Lmna+/+ cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl–prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A–related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single LmnaLCO allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24–/– mice. Moreover, treating Zmpste24–/– cells with a prelamin A–specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases.
doi:10.1172/JCI27125
PMCID: PMC1386109  PMID: 16511604
13.  Lipins, Lipinopathies, and the Modulation of Cellular Lipid Storage and Signaling 
Progress in lipid research  2013;52(3):10.1016/j.plipres.2013.04.001.
Summary
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins—lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of “lipinopathies” in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
doi:10.1016/j.plipres.2013.04.001
PMCID: PMC3830937  PMID: 23603613
14.  Adipose subtype–selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid-storage versus thermogenic gene programs 
Cell metabolism  2013;17(3):423-435.
Transcriptional effectors of white adipocyte-selective gene expression have not been described. Here we show that TLE3 is a white-selective cofactor that acts reciprocally with the brown-selective cofactor Prdm16 to specify lipid storage and thermogenic gene programs. Occupancy of TLE3 and Prdm16 on certain promoters is mutually exclusive, due to the ability of TLE3 to disrupt the physical interaction between Prdm16 and PPARγ. When expressed at elevated levels in brown fat, TLE3 counters Prdm16, suppressing brown-selective genes and inducing white-selective genes, resulting in impaired fatty acid oxidation and thermogenesis. Conversely, mice lacking TLE3 in adipose tissue show enhanced thermogenesis in inguinal white adipose depots and are protected from age-dependent deterioration of brown adipose tissue function. Our results suggest that the establishment of distinct adipocyte phenotypes with different capacities for thermogenesis and lipid storage is accomplished in part through the cell type–selective recruitment of TLE3 or Prdm16 to key adipocyte target genes.
doi:10.1016/j.cmet.2013.01.016
PMCID: PMC3626567  PMID: 23473036
15.  Targeting Protein Prenylation in Progeria 
Science translational medicine  2013;5(171):171ps3.
A clinical trial of a protein farnesyltransferase inhibitor (lonafarnib) for the treatment of Hutchinson-Gilford progeria syndrome (HGPS) was recently completed. Here, we discuss the mutation that causes HGPS, the rationale for inhibiting protein farnesyltransferase, the potential limitations of this therapeutic approach, and new potential strategies for treating the disease.
doi:10.1126/scitranslmed.3005229
PMCID: PMC3725554  PMID: 23390246
16.  Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1 
Human Molecular Genetics  2012;21(13):2961-2972.
Lipoprotein lipase (LPL) is a 448-amino-acid head-to-tail dimeric enzyme that hydrolyzes triglycerides within capillaries. LPL is secreted by parenchymal cells into the interstitial spaces; it then binds to GPIHBP1 (glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1) on the basolateral face of endothelial cells and is transported to the capillary lumen. A pair of amino acid substitutions, C418Y and E421K, abolish LPL binding to GPIHBP1, suggesting that the C-terminal portion of LPL is important for GPIHBP1 binding. However, a role for LPL's N terminus has not been excluded, and published evidence has suggested that only full-length homodimers are capable of binding GPIHBP1. Here, we show that LPL's C-terminal domain is sufficient for GPIHBP1 binding. We found, serendipitously, that two LPL missense mutations, G409R and E410V, render LPL susceptible to cleavage at residue 297 (a known furin cleavage site). The C terminus of these mutants (residues 298–448), bound to GPIHBP1 avidly, independent of the N-terminal fragment. We also generated an LPL construct with an in-frame deletion of the N-terminal catalytic domain (residues 50–289); this mutant was secreted but also was cleaved at residue 297. Once again, the C-terminal domain (residues 298–448) bound GPIHBP1 avidly. The binding of the C-terminal fragment to GPIHBP1 was eliminated by C418Y or E421K mutations. After exposure to denaturing conditions, the C-terminal fragment of LPL refolds and binds GPIHBP1 avidly. Thus, the binding of LPL to GPIHBP1 requires only the C-terminal portion of LPL and does not depend on full-length LPL homodimers.
doi:10.1093/hmg/dds127
PMCID: PMC3373243  PMID: 22493000
17.  IDOL Stimulates Clathrin-Independent Endocytosis and Multivesicular Body-Mediated Lysosomal Degradation of the Low-Density Lipoprotein Receptor 
Molecular and Cellular Biology  2013;33(8):1503-1514.
The low-density lipoprotein receptor (LDLR) is a critical determinant of plasma cholesterol levels that internalizes lipoprotein cargo via clathrin-mediated endocytosis. Here, we show that the E3 ubiquitin ligase IDOL stimulates a previously unrecognized, clathrin-independent pathway for LDLR internalization. Real-time single-particle tracking and electron microscopy reveal that IDOL is recruited to the plasma membrane by LDLR, promotes LDLR internalization in the absence of clathrin or caveolae, and facilitates LDLR degradation by shuttling it into the multivesicular body (MVB) protein-sorting pathway. The IDOL-dependent degradation pathway is distinct from that mediated by PCSK9 as only IDOL employs ESCRT (endosomal-sorting complex required for transport) complexes to recognize and traffic LDLR to lysosomes. Small interfering RNA (siRNA)-mediated knockdown of ESCRT-0 (HGS) or ESCRT-I (TSG101) components prevents IDOL-mediated LDLR degradation. We further show that USP8 acts downstream of IDOL to deubiquitinate LDLR and that USP8 is required for LDLR entry into the MVB pathway. These results provide key mechanistic insights into an evolutionarily conserved pathway for the control of lipoprotein receptor expression and cellular lipid uptake.
doi:10.1128/MCB.01716-12
PMCID: PMC3624246  PMID: 23382078
18.  Reciprocal Metabolic Perturbations in the Adipose Tissue and Liver of GPIHBP1-deficient Mice 
Objective
Gpihbp1-deficient mice (Gpihbp1−/−) lack the ability to transport lipoprotein lipase to the capillary lumen, resulting in mislocalization of LPL within tissues, defective lipolysis of triglyceride-rich lipoproteins, and chylomicronemia. We asked whether GPIHBP1 deficiency and mislocalization of catalytically active LPL would alter the composition of triglycerides in adipose tissue or perturb the expression of lipid biosynthetic genes. We also asked whether perturbations in adipose tissue composition and gene expression, if they occur, would be accompanied by reciprocal metabolic changes in the liver.
Methods and Results
The chylomicronemia in Gpihbp1−/− mice was associated with reduced levels of essential fatty acids in adipose tissue triglycerides and increased expression of lipid biosynthetic genes. The liver exhibited the opposite changes—increased levels of essential fatty acids in triglycerides and reduced expression of lipid biosynthetic genes.
Conclusions
Defective lipolysis in Gpihbp1−/− mice causes reciprocal metabolic perturbations in adipose tissue and liver. In adipose tissue, the essential fatty acid content of triglycerides is reduced and lipid biosynthetic gene expression is increased, while the opposite changes occur in the liver.
doi:10.1161/ATVBAHA.111.241406
PMCID: PMC3281771  PMID: 22173228
lipoprotein lipase; hypertriglyceridemia; lipolysis; essential fatty acids; lipid biosynthetic genes
19.  The Arrestin Domain Containing 3 (ARRDC3) Protein Regulates Body Mass and Energy Expenditure 
Cell metabolism  2011;14(5):671-683.
Summary
A human genome-wide linkage scan for obesity identified a linkage peak on chromosome 5q13–15. Positional cloning revealed an association of a rare haplotype to high body-mass index (BMI) in males but not females. The risk locus contains a single gene, “arrestin domain containing 3” (ARRDC3), an uncharacterized α-arrestin. Inactivating Arrdc3 in mice led to a striking resistance to obesity, with greater impact on male mice. Mice with decreased ARRDC3 levels were protected from obesity due to increased energy expenditure through increased activity levels and increased thermogenesis of both brown and white adipose tissues. ARRDC3 interacted directly with β-adrenergic receptors, and loss of ARRDC3 increased the response to β-adrenergic stimulation in isolated adipose tissue. These results demonstrate that ARRDC3 is a gender-sensitive regulator of obesity and energy expenditure and reveal a surprising diversity for arrestin family protein functions.
doi:10.1016/j.cmet.2011.08.011
PMCID: PMC3216113  PMID: 21982743
20.  Are B-type lamins essential in all mammalian cells? 
Nucleus  2011;2(6):562-569.
The B-type lamins are widely assumed to be essential for mammalian cells. In part, this assumption is based on a highly cited study that found that RNAi-mediated knockdown of lamin B1 or lamin B2 in HeLa cells arrested cell growth and led to apoptosis. Studies indicating that B-type lamins play roles in DNA replication, the formation of the mitotic spindle, chromatin organization and regulation of gene expression have fueled the notion that B-type lamins must be essential. But surprisingly, this idea had never been tested with genetic approaches. Earlier this year, a research group from UCLA reported the development of genetically modified mice that lack expression of both Lmnb1 and Lmnb2 in skin keratinocytes (a cell type that proliferates rapidly and participates in complex developmental programs). They reasoned that if lamins B1 and B2 were truly essential, then keratinocyte-specific lamin B1/lamin B2 knockout mice would exhibit severe pathology. Contrary to expectations, the skin and hair of lamin B1/lamin B2-deficient mice were quite normal, indicating that the B-type lamins are dispensable in some cell types. The same UCLA research group has gone on to show that lamin B1 and lamin B2 are critical for neuronal migration in the developing brain and for neuronal survival.  The absence of either lamin B1 or lamin B2, or the absence of both B-type lamins, results in severe neurodevelopmental abnormalities.
doi:10.4161/nucl.2.6.18085
PMCID: PMC3324344  PMID: 22127257
lamin B1; lamin B2; nuclear envelope; nuclear lamina
21.  An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair 
Human Molecular Genetics  2011;20(18):3537-3544.
Nuclear lamins are usually classified as A-type (lamins A and C) or B-type (lamins B1 and B2). A-type lamins have been implicated in multiple genetic diseases but are not required for cell growth or development. In contrast, B-type lamins have been considered essential in eukaryotic cells, with crucial roles in DNA replication and in the formation of the mitotic spindle. Knocking down the genes for B-type lamins (LMNB1, LMNB2) in HeLa cells has been reported to cause apoptosis. In the current study, we created conditional knockout alleles for mouse Lmnb1 and Lmnb2, with the goal of testing the hypothesis that B-type lamins are crucial for the growth and viability of mammalian cells in vivo. Using the keratin 14-Cre transgene, we bred mice lacking the expression of both Lmnb1 and Lmnb2 in skin keratinocytes (Lmnb1Δ/ΔLmnb2Δ/Δ). Lmnb1 and Lmnb2 transcripts were absent in keratinocytes of Lmnb1Δ/ΔLmnb2Δ/Δ mice, and lamin B1 and lamin B2 proteins were undetectable. But despite an absence of B-type lamins in keratinocytes, the skin and hair of Lmnb1Δ/ΔLmnb2Δ/Δ mice developed normally and were free of histological abnormalities, even in 2-year-old mice. After an intraperitoneal injection of bromodeoxyuridine (BrdU), similar numbers of BrdU-positive keratinocytes were observed in the skin of wild-type and Lmnb1Δ/ΔLmnb2Δ/Δ mice. Lmnb1Δ/ΔLmnb2Δ/Δ keratinocytes did not exhibit aneuploidy, and their growth rate was normal in culture. These studies challenge the concept that B-type lamins are essential for proliferation and vitality of eukaryotic cells.
doi:10.1093/hmg/ddr266
PMCID: PMC3159554  PMID: 21659336
22.  New wrinkles in lipoprotein lipase biology 
Current Opinion in Lipidology  2012;23(1):35-42.
Purpose of review
We summarize recent progress on GPIHBP1, a molecule that transports lipoprotein lipase (LPL) to the capillary lumen, and discuss several newly studied molecules that appear important for the regulation of LPL activity.
Recent findings
LPL, the enzyme responsible for the lipolytic processing of triglyceride-rich lipoproteins, interacts with multiple proteins and is regulated at multiple levels. Several regulators of LPL activity have been known for years and have been investigated thoroughly, but several have been identified only recently, including an endothelial cell protein that transports LPL to the capillary lumen, a microRNA that reduces LPL transcript levels, a sorting protein that targets LPL for uptake and degradation, and a transcription factor that increases the expression of apolipoproteins that regulate LPL activity.
Summary
Proper regulation of LPL is important for controlling the delivery of lipid nutrients to tissues. Recent studies have identified GPIHBP1 as the molecule that transports LPL to the capillary lumen, and have also identified other molecules that are potentially important for regulating LPL activity. These new discoveries open new doors for understanding basic mechanisms of lipolysis and hyperlipidemia.
doi:10.1097/MOL.0b013e32834d0b33
PMCID: PMC3383841  PMID: 22123668
diabetes mellitus; gene regulation; lipoproteins; triglyceride metabolism
23.  Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons 
Molecular Biology of the Cell  2011;22(23):4683-4693.
Lamin B1 is essential for neuronal migration and progenitor proliferation during the development of the cerebral cortex. The observation of distinct phenotypes of Lmnb1- and Lmnb2-knockout mice and the differences in the nuclear morphology of cortical neurons in vivo suggest that lamin B1 and lamin B2 play distinct functions in the developing brain.
Neuronal migration is essential for the development of the mammalian brain. Here, we document severe defects in neuronal migration and reduced numbers of neurons in lamin B1–deficient mice. Lamin B1 deficiency resulted in striking abnormalities in the nuclear shape of cortical neurons; many neurons contained a solitary nuclear bleb and exhibited an asymmetric distribution of lamin B2. In contrast, lamin B2 deficiency led to increased numbers of neurons with elongated nuclei. We used conditional alleles for Lmnb1 and Lmnb2 to create forebrain-specific knockout mice. The forebrain-specific Lmnb1- and Lmnb2-knockout models had a small forebrain with disorganized layering of neurons and nuclear shape abnormalities, similar to abnormalities identified in the conventional knockout mice. A more severe phenotype, complete atrophy of the cortex, was observed in forebrain-specific Lmnb1/Lmnb2 double-knockout mice. This study demonstrates that both lamin B1 and lamin B2 are essential for brain development, with lamin B1 being required for the integrity of the nuclear lamina, and lamin B2 being important for resistance to nuclear elongation in neurons.
doi:10.1091/mbc.E11-06-0504
PMCID: PMC3226484  PMID: 21976703
24.  Absence of progeria-like disease phenotypes in knock-in mice expressing a non-farnesylated version of progerin 
Human Molecular Genetics  2010;20(3):436-444.
Hutchinson–Gilford progeria syndrome (HGPS) is caused by a mutant prelamin A, progerin, that terminates with a farnesylcysteine. HGPS knock-in mice (LmnaHG/+) develop severe progeria-like disease phenotypes. These phenotypes can be ameliorated with a protein farnesyltransferase inhibitor (FTI), suggesting that progerin's farnesyl lipid is important for disease pathogenesis and raising the possibility that FTIs could be useful for treating humans with HGPS. Subsequent studies showed that mice expressing non-farnesylated progerin (LmnanHG/+ mice, in which progerin's carboxyl-terminal –CSIM motif was changed to –SSIM) also develop severe progeria, raising doubts about whether any treatment targeting protein prenylation would be particularly effective. We suspected that those doubts might be premature and hypothesized that the persistent disease in LmnanHG/+ mice could be an unanticipated consequence of the cysteine-to-serine substitution that was used to eliminate farnesylation. To test this hypothesis, we generated a second knock-in allele yielding non-farnesylated progerin (LmnacsmHG) in which the carboxyl-terminal –CSIM motif was changed to –CSM. We then compared disease phenotypes in mice harboring the LmnanHG or LmnacsmHG allele. As expected, LmnanHG/+ and LmnanHG/nHG mice developed severe progeria-like disease phenotypes, including osteolytic lesions and rib fractures, osteoporosis, slow growth and reduced survival. In contrast, LmnacsmHG/+ and LmnacsmHG/csmHG mice exhibited no bone disease and displayed entirely normal body weights and survival. The frequencies of misshapen cell nuclei were lower in LmnacsmHG/+ and LmnacsmHG/csmHG fibroblasts. These studies show that the ability of non-farnesylated progerin to elicit disease depends on the carboxyl-terminal mutation used to eliminate protein prenylation.
doi:10.1093/hmg/ddq490
PMCID: PMC3016906  PMID: 21088111
25.  Binding Preferences for GPIHBP1, a GPI-Anchored Protein of Capillary Endothelial Cells 
Objective
GPIHBP1, a glycosylphosphatidylinositol-anchored Ly6 protein of capillary endothelial cells, binds lipoprotein lipase (LPL) avidly, but its ability to bind related lipase family members has never been evaluated. We sought to define the ability of GPIHBP1 to bind other lipase family members as well as other apolipoproteins and lipoproteins.
Methods and Results
As judged by cell-based and cell-free binding assays, LPL binds to GPIHBP1 but other members of the lipase family do not. We also examined the binding of apoAV–phospholipid disks to GPIHBP1. ApoAV binds avidly to GPIHBP1-transfected cells; this binding requires GPIHBP1’s amino-terminal acidic domain and is independent of its cysteine-rich Ly6 domain (the latter domain is essential for LPL binding). GPIHBP1-transfected cells did not bind HDL. Chylomicrons binds avidly to GPIHBP1-transfected CHO cells, but this binding is dependent on GPIHBP1’s ability to bind LPL within the cell culture medium.
Conclusions
GPIHBP1 binds LPL but does not bind other lipase family members. GPIHBP1 binds apoAV but did not bind apoAI or HDL. The ability of GPIHBP1-transfected CHO cells to bind chylomicrons is mediated by LPL; chylomicron binding does not occur unless GPIHBP1 first captures LPL from the cell culture medium.
doi:10.1161/ATVBAHA.110.214718
PMCID: PMC3004026  PMID: 20966398
lipoprotein lipase; chylomicronemia; hypertriglyceridemia; GPIHBP1

Results 1-25 (52)