Search tips
Search criteria

Results 1-25 (62)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Do lamin B1 and lamin B2 have redundant functions? 
Nucleus  2014;5(4):287-292.
Lamins B1 and B2 have a high degree of sequence similarity and are widely expressed from the earliest stages of development. Studies of Lmnb1 and Lmnb2 knockout mice revealed that both of the B-type lamins are crucial for neuronal migration in the developing brain. These observations naturally posed the question of whether the two B-type lamins might play redundant functions in the development of the brain. To explore that issue, Lee and coworkers generated “reciprocal knock-in mice” (knock-in mice that produce lamin B1 from the Lmnb2 locus and knock-in mice that produce lamin B2 from the Lmnb1 locus). Both lines of knock-in mice manifested neurodevelopmental abnormalities similar to those in conventional knockout mice, indicating that lamins B1 and B2 have unique functions and that increased production of one B-type lamin cannot compensate for the loss of the other.
PMCID: PMC4152341  PMID: 25482116
lamin B1; lamin B2; nuclear envelope; nuclear lamina
2.  An Absence of Nuclear Lamins in Keratinocytes Leads to Ichthyosis, Defective Epidermal Barrier Function, and Intrusion of Nuclear Membranes and Endoplasmic Reticulum into the Nuclear Chromatin 
Molecular and Cellular Biology  2014;34(24):4534-4544.
B-type lamins (lamins B1 and B2) have been considered to be essential for many crucial functions in the cell nucleus (e.g., DNA replication and mitotic spindle formation). However, this view has been challenged by the observation that an absence of both B-type lamins in keratinocytes had no effect on cell proliferation or the development of skin and hair. The latter findings raised the possibility that the functions of B-type lamins are subserved by lamins A and C. To explore that idea, we created mice lacking all nuclear lamins in keratinocytes. Those mice developed ichthyosis and a skin barrier defect, which led to death from dehydration within a few days after birth. Microscopy of nuclear-lamin-deficient skin revealed hyperkeratosis and a disordered stratum corneum with an accumulation of neutral lipid droplets; however, BrdU incorporation into keratinocytes was normal. Skin grafting experiments confirmed the stratum corneum abnormalities and normal BrdU uptake. Interestingly, the absence of nuclear lamins in keratinocytes resulted in an interspersion of nuclear/endoplasmic reticulum membranes with the chromatin. Thus, a key function of the nuclear lamina is to serve as a “fence” and prevent the incursion of cytoplasmic organelles into the nuclear chromatin.
PMCID: PMC4248738  PMID: 25312645
3.  The GPIHBP1–LPL complex is responsible for the margination of triglyceride-rich lipoproteins in capillaries 
Cell metabolism  2014;19(5):849-860.
Triglyceride-rich lipoproteins (TRLs) undergo lipolysis by lipoprotein lipase (LPL), an enzyme that is transported to the capillary lumen by an endothelial cell protein, GPIHBP1. For LPL-mediated lipolysis to occur, TRLs must bind to the lumen of capillaries. This process is often assumed to involve heparan sulfate proteoglycans (HSPGs), but we suspected that TRL margination might instead require GPIHBP1. Indeed, TRLs marginate along the heart capillaries of wild-type but not Gpihbp1−/− mice, as judged by fluorescence microscopy, quantitative assays with infrared-dye–labeled lipoproteins, and EM tomography. Both cell culture and in vivo studies showed that TRL margination depends on LPL bound to GPIHBP1. Of note, the expression of LPL by endothelial cells in Gpihbp1−/− mice did not restore defective TRL margination, implying that the binding of LPL to HSPGs is ineffective in promoting TRL margination. Our studies show that GPIHBP1-bound LPL is the main determinant of TRL margination.
PMCID: PMC4143151  PMID: 24726386
4.  Nuclear Lamins and Neurobiology 
Molecular and Cellular Biology  2014;34(15):2776-2785.
Much of the work on nuclear lamins during the past 15 years has focused on mutations in LMNA (the gene for prelamin A and lamin C) that cause particular muscular dystrophy, cardiomyopathy, partial lipodystrophy, and progeroid syndromes. These disorders, often called “laminopathies,” mainly affect mesenchymal tissues (e.g., striated muscle, bone, and fibrous tissue). Recently, however, a series of papers have identified important roles for nuclear lamins in the central nervous system. Studies of knockout mice uncovered a key role for B-type lamins (lamins B1 and B2) in neuronal migration in the developing brain. Also, duplications of LMNB1 (the gene for lamin B1) have been shown to cause autosome-dominant leukodystrophy. Finally, recent studies have uncovered a peculiar pattern of nuclear lamin expression in the brain. Lamin C transcripts are present at high levels in the brain, but prelamin A expression levels are very low—due to regulation of prelamin A transcripts by microRNA 9. This form of prelamin A regulation likely explains why “prelamin A diseases” such as Hutchinson-Gilford progeria syndrome spare the central nervous system. In this review, we summarize recent progress in elucidating links between nuclear lamins and neurobiology.
PMCID: PMC4135577  PMID: 24842906
5.  Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2 
Molecular Biology of the Cell  2014;25(10):1666-1675.
To assess the redundancy of lamins B1 and B2, knock-in lines were created that produce lamin B2 from the Lmnb1 locus and lamin B1 from the Lmnb2 locus. Both lines developed severe neurodevelopmental abnormalities, indicating that the abnormalities elicited by the loss of one B-type lamin cannot be prevented by increased synthesis of the other.
Lamins B1 and B2 (B-type lamins) have very similar sequences and are expressed ubiquitously. In addition, both Lmnb1- and Lmnb2-deficient mice die soon after birth with neuronal layering abnormalities in the cerebral cortex, a consequence of defective neuronal migration. The similarities in amino acid sequences, expression patterns, and knockout phenotypes raise the question of whether the two proteins have redundant functions. To investigate this topic, we generated “reciprocal knock-in mice”—mice that make lamin B2 from the Lmnb1 locus (Lmnb1B2/B2) and mice that make lamin B1 from the Lmnb2 locus (Lmnb2B1/B1). Lmnb1B2/B2 mice produced increased amounts of lamin B2 but no lamin B1; they died soon after birth with neuronal layering abnormalities in the cerebral cortex. However, the defects in Lmnb1B2/B2 mice were less severe than those in Lmnb1-knockout mice, indicating that increased amounts of lamin B2 partially ameliorate the abnormalities associated with lamin B1 deficiency. Similarly, increased amounts of lamin B1 in Lmnb2B1/B1 mice did not prevent the neurodevelopmental defects elicited by lamin B2 deficiency. We conclude that lamins B1 and B2 have unique roles in the developing brain and that increased production of one B-type lamin does not fully complement loss of the other.
PMCID: PMC4019497  PMID: 24672053
6.  GPIHBP1 and the intravascular processing of triglyceride-rich lipoproteins 
Journal of internal medicine  2012;272(6):528-540.
Lipoprotein lipase (LPL) is produced by parenchymal cells, mainly adipocytes and myocytes, but its role in hydrolyzing triglycerides in plasma lipoproteins occurs at the capillary lumen. For decades, the mechanism by which LPL reached its site of action in capillaries was unclear, but this mystery was recently solved. GPIHBP1, a GPI-anchored protein of capillary endothelial cells, picks up LPL from the interstitial spaces and shuttles it across endothelial cells to the capillary lumen. When GPIHBP1 is absent, LPL is mislocalized to the interstitial spaces, leading to severe hypertriglyceridemia. Some cases of hypertriglyceridemia in humans are caused by GPIHBP1 mutations that interfere with GPIHBP1's ability to bind LPL, and some are caused by LPL mutations that impair LPL's ability to bind to GPIHBP1. This review will cover recent progress in understanding GPIHBP1's role in health and disease and will discuss some remaining mysteries surrounding the processing of triglyceride-rich lipoproteins.
PMCID: PMC3940157  PMID: 23020258
hypertriglyceridemia; chylomicronemia; GPIHBP1; lipoprotein lipase; endothelial cells; lymphocyte antigen 6 proteins
7.  Nuclear lamins in the brain—new insights into function and regulation 
Molecular neurobiology  2012;47(1):290-301.
The nuclear lamina is an intermediate filament meshwork composed largely of four nuclear lamins—lamins A and C (A-type lamins) and lamins B1 and B2 (B-type lamins). Located immediately adjacent to the inner nuclear membrane, the nuclear lamina provides a structural scaffolding for the cell nucleus. It also interacts with both nuclear membrane proteins and the chromatin and is thought to participate in many important functions within the cell nucleus. Defects in A-type lamins cause cardiomyopathy, muscular dystrophy, peripheral neuropathy, lipodystrophy, and progeroid disorders. In contrast, the only bona fide link between the B-type lamins and human disease is a rare demyelinating disease of the central nervous system—adult-onset autosomal-dominant leukoencephalopathy, caused by a duplication of the gene for lamin B1. However, this leukoencephalopathy is not the only association between the brain and B-type nuclear lamins. Studies of conventional and tissue-specific knockout mice have demonstrated that B-type lamins play essential roles in neuronal migration in the developing brain and in neuronal survival. The importance of A-type lamin expression in the brain is unclear, but it is intriguing that the adult brain preferentially expresses lamin C rather than lamin A, very likely due to microRNA-mediated removal of prelamin A transcripts. Here, we review recent studies on nuclear lamins, focusing on the function and regulation of the nuclear lamins in the central nervous system.
PMCID: PMC3538886  PMID: 23065386
Nuclear lamina; brain development; A-type lamins; B-type lamins; differential gene expression
9.  GPIHBP1 Missense Mutations Often Cause Multimerization of GPIHBP1 and Thereby Prevent Lipoprotein Lipase Binding 
Circulation research  2014;116(4):624-632.
GPIHBP1, a GPI-anchored protein of capillary endothelial cells, binds lipoprotein lipase (LPL) in the subendothelial spaces and shuttles it to the capillary lumen. GPIHBP1 missense mutations that interfere with LPL binding cause familial chylomicronemia.
We sought to understand mechanisms by which GPIHBP1 mutations prevent LPL binding and lead to chylomicronemia.
Methods and Results
We expressed mutant forms of GPIHBP1 in Chinese hamster ovary cells, rat and human endothelial cells, and Drosophila S2 cells. In each expression system, mutation of cysteines in GPIHBP1’s Ly6 domain (including mutants identified in chylomicronemia patients) led to the formation of disulfide-linked dimers and multimers. GPIHBP1 dimerization/multimerization was not unique to cysteine mutations; mutations in other amino acid residues, including several associated with chylomicronemia, also led to protein dimerization/multimerization. The loss of GPIHBP1 monomers is quite relevant to the pathogenesis of chylomicronemia because only GPIHBP1 monomers—and not dimers or multimers—are capable of binding LPL. One GPIHBP1 mutant, GPIHBP1-W109S, had distinctive properties. GPIHBP1-W109S lacked the ability to bind LPL but had a reduced propensity for forming dimers or multimers, suggesting that W109 might play a more direct role in binding LPL. In support of that idea, replacing W109 with any of 8 other amino acids abolished LPL binding—and often did so without promoting the formation of dimers and multimers.
Many amino acid substitutions in GPIHBP1’s Ly6 domain that abolish LPL binding lead to protein dimerization/multimerization. Dimerization/multimerization is relevant to disease pathogenesis, given that only GPIHBP1 monomers are capable of binding LPL.
PMCID: PMC4329087  PMID: 25387803
Lipoprotein lipase; hypertriglyceridemia; multimerization; GPIHBP1; lipids and lipoprotein metabolism; chylomicron; triglycerides; endothelial cell
10.  Investigating the purpose of prelamin A processing 
Nucleus  2011;2(1):4-9.
Lmna yields two major protein products in somatic cells, lamin C and prelamin A. Mature lamin A is produced from prelamin A by four posttranslational processing steps—farnesylation of a carboxyl-terminal cysteine, release of the last three amino acids of the protein, methylation of the farnesylcysteine, and the endoproteolytic release of the carboxyl-terminal 15 amino acids of the protein (including the farnesylcysteine methyl ester). Although the posttranslational processing of prelamin A has been conserved in vertebrate evolution, its physiologic significance remains unclear. Here we review recent studies in which we investigated prelamin A processing with Lmna knock-in mice that produce exclusively prelamin A (LmnaPLAO), mature lamin A (LmnaLAO) or nonfarnesylated prelamin A (LmnanPLAO). We found that the synthesis of lamin C is dispensable in laboratory mice, that the direct production of mature lamin A (completely bypassing all prelamin A processing) causes no discernable pathology in mice, and that exclusive production of nonfarnesylated prelamin A leads to cardiomyopathy.
PMCID: PMC3104803  PMID: 21647293
prelamin A; progeria; restrictive dermopathy; protein farnesylation; cardiomyopathy
11.  Treatment with a Farnesyltransferase Inhibitor Improves Survival in Mice with a Hutchinson-Gilford Progeria Syndrome Mutation 
Biochimica et biophysica acta  2007;1781(1-2):36-39.
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid syndrome characterized by multiple aging-like disease phenotypes. We recently reported that a protein farnesyltransferase inhibitor (FTI) improved several disease phenotypes in mice with a HGPS mutation (LmnaHG/+). Here, we investigated the impact of an FTI on the survival of LmnaHG/+ mice. The FTI significantly improved the survival of both male and female LmnaHG/+ mice. Treatment with the FTI also improved body weight curves and reduced the number of spontaneous rib fractures. This study provides further evidence for a beneficial effect of an FTI in HGPS.
PMCID: PMC2266774  PMID: 18082640
progeria; aging; protein farnesyltransferase inhibitor; knock-in mice
12.  Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution 
Biochimica et biophysica acta  2007;1771(12):1464-1468.
GPIHBP1 is an endothelial cell protein that serves as a platform for lipoprotein lipase–mediated processing of triglyceride-rich lipoproteins within the capillaries of heart, adipose tissue, and skeletal muscle. The absence of GPIHBP1 causes severe chylomicronemia. A hallmark of GPIHBP1 is the ability to bind lipoprotein lipase, chylomicrons, and apolipoprotein (apo-) AV. A homozygous G56R mutation in GPIHBP1 was recently identified in two brothers with chylomicronemia, and the authors of that study suggested that the G56R substitution was responsible for the hyperlipidemia. In this study, we created a human GPIHBP1 expression vector, introduced the G56R mutation, and tested the ability of the mutant GPIHBP1 to reach the cell surface and bind lipoprotein lipase, chylomicrons, and apo-AV. Our studies revealed that the G56R substitution did not affect the ability of GPIHBP1 to reach the cell surface, nor did the amino acid substitution have any discernible effect on the binding of lipoprotein lipase, chylomicrons, or apo-AV.
PMCID: PMC2266775  PMID: 17997385
chylomicronemia; GPIHBP1; hypertriglyceridemia; apolipoprotein AV; lipoprotein lipase
13.  Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated 
The Journal of Clinical Investigation  2008;118(10):3291-3300.
Hutchinson-Gilford progeria syndrome (HGPS), a rare disease that results in what appears to be premature aging, is caused by the production of a mutant form of prelamin A known as progerin. Progerin retains a farnesyl lipid anchor at its carboxyl terminus, a modification that is thought to be important in disease pathogenesis. Inhibition of protein farnesylation improves the hallmark nuclear shape abnormalities in HGPS cells and ameliorates disease phenotypes in mice harboring a knockin HGPS mutation (LmnaHG/+). The amelioration of disease, however, is incomplete, leading us to hypothesize that nonfarnesylated progerin also might be capable of eliciting disease. To test this hypothesis, we created knockin mice expressing nonfarnesylated progerin (LmnanHG/+). LmnanHG/+ mice developed the same disease phenotypes observed in LmnaHG/+ mice, although the phenotypes were milder, and mouse embryonic fibroblasts (MEFs) derived from these mice contained fewer misshapen nuclei. The steady-state levels of progerin in LmnanHG/+ MEFs and tissues were lower, suggesting a possible explanation for the milder phenotypes. These data support the concept that inhibition of protein farnesylation in progeria could be therapeutically useful but also suggest that this approach may be limited, as progerin elicits disease phenotypes whether or not it is farnesylated.
PMCID: PMC2525700  PMID: 18769635
14.  A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation 
The Journal of Clinical Investigation  2006;116(8):2115-2121.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by the production of a truncated prelamin A, called progerin, which is farnesylated at its carboxyl terminus. Progerin is targeted to the nuclear envelope and causes misshapen nuclei. Protein farnesyltransferase inhibitors (FTI) mislocalize progerin away from the nuclear envelope and reduce the frequency of misshapen nuclei. To determine whether an FTI would ameliorate disease phenotypes in vivo, we created gene-targeted mice with an HGPS mutation (LmnaHG/+) and then examined the effect of an FTI on disease phenotypes. LmnaHG/+ mice exhibited phenotypes similar to those in human HGPS patients, including retarded growth, reduced amounts of adipose tissue, micrognathia, osteoporosis, and osteolytic lesions in bone. Osteolytic lesions in the ribs led to spontaneous bone fractures. Treatment with an FTI increased adipose tissue mass, improved body weight curves, reduced the number of rib fractures, and improved bone mineralization and bone cortical thickness. These studies suggest that FTIs could be useful for treating humans with HGPS.
PMCID: PMC1513052  PMID: 16862216
15.  Prelamin A and lamin A appear to be dispensable in the nuclear lamina 
Journal of Clinical Investigation  2006;116(3):743-752.
Lamin A and lamin C, both products of Lmna, are key components of the nuclear lamina. In the mouse, a deficiency in both lamin A and lamin C leads to slow growth, muscle weakness, and death by 6 weeks of age. Fibroblasts deficient in lamins A and C contain misshapen and structurally weakened nuclei, and emerin is mislocalized away from the nuclear envelope. The physiologic rationale for the existence of the 2 different Lmna products lamin A and lamin C is unclear, although several reports have suggested that lamin A may have particularly important functions, for example in the targeting of emerin and lamin C to the nuclear envelope. Here we report the development of lamin C–only mice (Lmna+/+), which produce lamin C but no lamin A or prelamin A (the precursor to lamin A). Lmna+/+ mice were entirely healthy, and Lmna+/+ cells displayed normal emerin targeting and exhibited only very minimal alterations in nuclear shape and nuclear deformability. Thus, at least in the mouse, prelamin A and lamin A appear to be dispensable. Nevertheless, an accumulation of farnesyl–prelamin A (as occurs with a deficiency in the prelamin A processing enzyme Zmpste24) caused dramatically misshapen nuclei and progeria-like disease phenotypes. The apparent dispensability of prelamin A suggested that lamin A–related progeroid syndromes might be treated with impunity by reducing prelamin A synthesis. Remarkably, the presence of a single LmnaLCO allele eliminated the nuclear shape abnormalities and progeria-like disease phenotypes in Zmpste24–/– mice. Moreover, treating Zmpste24–/– cells with a prelamin A–specific antisense oligonucleotide reduced prelamin A levels and significantly reduced the frequency of misshapen nuclei. These studies suggest a new therapeutic strategy for treating progeria and other lamin A diseases.
PMCID: PMC1386109  PMID: 16511604
16.  Equivalent binding of wild-type lipoprotein lipase (LPL) and S447X-LPL to GPIHBP1, the endothelial cell LPL transporter 
Biochimica et biophysica acta  2014;1841(7):963-969.
The S447X polymorphism in lipoprotein lipase (LPL), which shortens LPL by two amino acids, is associated with low plasma triglyceride levels and reduced risk for coronary heart disease. S447X carriers have higher LPL levels in the pre- and post-heparin plasma, raising the possibility that the S447X polymorphism leads to higher LPL levels within capillaries. One potential explanation for increased amounts of LPL in capillaries would be more avid binding of S447X-LPL to GPIHBP1 (the protein that binds LPL dimers and shuttles them to the capillary lumen). This explanation seems plausible because sequences within the carboxyl terminus of LPL are known to mediate LPL binding to GPIHBP1. To assess the impact of the S447X polymorphism on LPL binding to GPIHBP1, we compared the ability of internally tagged versions of wild-type LPL (WT-LPL) and S447X-LPL to bind to GPIHBP1 in both cell-based and cell-free binding assays. In the cell-based assay, we compared the binding of WT-LPL and S447X-LPL to GPIHBP1 on the surface of cultured cells. This assay revealed no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1. In the cell-free assay, we compared the binding of internally tagged WT-LPL and S447X-LPL to soluble GPIHBP1 immobilized on agarose beads. Again, no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1 were observed. We conclude that increased binding of S447X-LPL to GPIHBP1 is unlikely to be the explanation for more efficient lipolysis and lower plasma triglyceride levels in S447X carriers.
PMCID: PMC4212522  PMID: 24704550
17.  A new monoclonal antibody, 4-1a, that binds to the amino terminus of human lipoprotein lipase 
Biochimica et biophysica acta  2014;1841(7):970-976.
Lipoprotein lipase (LPL) has been highly conserved through vertebrate evolution, making it challenging to generate useful antibodies. Some polyclonal antibodies against LPL have turned out to be nonspecific, and the available monoclonal antibodies (Mab) against LPL, all of which bind to LPL’s carboxyl terminus, have drawbacks for some purposes. We report a new LPL-specific monoclonal antibody, Mab 4-1a, which binds to the amino terminus of LPL (residues 5–25). Mab 4-1a binds human and bovine LPL avidly; it does not inhibit LPL catalytic activity nor does it interfere with the binding of LPL to heparin. Mab 4-1a does not bind to human hepatic lipase. Mab 4-1a binds to GPIHBP1-bound LPL and does not interfere with the ability of the LPL–GPIHBP1 complex to bind triglyceride-rich lipoproteins. Mab 4-1a will be a useful reagent for both biochemists and clinical laboratories.
PMCID: PMC4222086  PMID: 24681165
18.  Nuclear Envelope Protein Lem2 is Required for Mouse Development and Regulates MAP and AKT Kinases 
PLoS ONE  2015;10(3):e0116196.
The nuclear lamina, along with associated nuclear membrane proteins, is a nexus for regulating signaling in the nucleus. Numerous human diseases arise from mutations in lamina proteins, and experimental models for these disorders have revealed aberrant regulation of various signaling pathways. Previously, we reported that the inner nuclear membrane protein Lem2, which is expressed at high levels in muscle, promotes the differentiation of cultured myoblasts by attenuating ERK signaling. Here, we have analyzed mice harboring a disrupted allele for the Lem2 gene (Lemd2). No gross phenotypic defects were seen in heterozygotes, although muscle regeneration induced by cardiotoxin was delayed. By contrast, homozygous Lemd2 knockout mice died by E11.5. Although many normal morphogenetic hallmarks were observed in E10.5 knockout embryos, most tissues were substantially reduced in size. This was accompanied by activation of multiple MAP kinases (ERK1/2, JNK, p38) and AKT. Knockdown of Lem2 expression in C2C12 myoblasts also led to activation of MAP kinases and AKT. These findings indicate that Lemd2 plays an essential role in mouse embryonic development and that it is involved in regulating several signaling pathways. Since increased MAP kinase and AKT/mTORC signaling is found in other animal models for diseases linked to nuclear lamina proteins, LEMD2 should be considered to be another candidate gene for human disease.
PMCID: PMC4366207  PMID: 25790465
19.  New Lmna knock-in mice provide a molecular mechanism for the ‘segmental aging’ in Hutchinson–Gilford progeria syndrome† 
Human Molecular Genetics  2013;23(6):1506-1515.
Lamins A and C (products of the LMNA gene) are found in roughly equal amounts in peripheral tissues, but the brain produces mainly lamin C and little lamin A. In HeLa cells and fibroblasts, the expression of prelamin A (the precursor to lamin A) can be reduced by miR-9, but the relevance of those cell culture studies to lamin A regulation in the brain was unclear. To address this issue, we created two new Lmna knock-in alleles, one (LmnaPLAO-5NT) with a 5-bp mutation in a predicted miR-9 binding site in prelamin A's 3′ UTR, and a second (LmnaPLAO-UTR) in which prelamin A's 3′ UTR was replaced with lamin C's 3′ UTR. Neither allele had significant effects on lamin A levels in peripheral tissues; however, both substantially increased prelamin A transcript levels and lamin A protein levels in the cerebral cortex and the cerebellum. The increase in lamin A expression in the brain was more pronounced with the LmnaPLAO-UTR allele than with the LmnaPLAO-5NT allele. With both alleles, the increased expression of prelamin A transcripts and lamin A protein was greater in the cerebral cortex than in the cerebellum. Our studies demonstrate the in vivo importance of prelamin A's 3′ UTR and its miR-9 binding site in regulating lamin A expression in the brain. The reduced expression of prelamin A in the brain likely explains why children with Hutchinson–Gilford progeria syndrome (a progeroid syndrome caused by a mutant form of prelamin A) are spared from neurodegenerative disease.
PMCID: PMC3929089  PMID: 24203701
20.  Sphingosine-1-phosphate lyase downregulation promotes colon carcinogenesis through STAT3-activated microRNAs 
The Journal of Clinical Investigation  2014;124(12):5368-5384.
Growing evidence supports a link between inflammation and cancer; however, mediators of the transition between inflammation and carcinogenesis remain incompletely understood. Sphingosine-1-phosphate (S1P) lyase (SPL) irreversibly degrades the bioactive sphingolipid S1P and is highly expressed in enterocytes but downregulated in colon cancer. Here, we investigated the role of SPL in colitis-associated cancer (CAC). We generated mice with intestinal epithelium-specific Sgpl1 deletion and chemically induced colitis and tumor formation in these animals. Compared with control animals, mice lacking intestinal SPL exhibited greater disease activity, colon shortening, cytokine levels, S1P accumulation, tumors, STAT3 activation, STAT3-activated microRNAs (miRNAs), and suppression of miR-targeted anti-oncogene products. This phenotype was attenuated by STAT3 inhibition. In fibroblasts, silencing SPL promoted tumorigenic transformation through a pathway involving extracellular transport of S1P through S1P transporter spinster homolog 2 (SPNS2), S1P receptor activation, JAK2/STAT3-dependent miR-181b-1 induction, and silencing of miR-181b-1 target cylindromatosis (CYLD). Colon biopsies from patients with inflammatory bowel disease revealed enhanced S1P and STAT3 signaling. In mice with chemical-induced CAC, oral administration of plant-type sphingolipids called sphingadienes increased colonic SPL levels and reduced S1P levels, STAT3 signaling, cytokine levels, and tumorigenesis, indicating that SPL prevents transformation and carcinogenesis. Together, our results suggest that dietary sphingolipids can augment or prevent colon cancer, depending upon whether they are metabolized to S1P or promote S1P metabolism through the actions of SPL.
PMCID: PMC4348973  PMID: 25347472
21.  Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis 
Inducible Degrader Of the Low-density lipoprotein receptor (IDOL) is an E3 ubiquitin ligase that mediates the ubiquitination and degradation of the low-density lipoprotein receptor (LDLR). IDOL expression is controlled at the transcriptional level by the cholesterol-sensing nuclear receptor LXR. In response to rising cellular sterol levels, activated LXR induces IDOL production, thereby limiting further uptake of exogenous cholesterol through the LDLR pathway. The LXR–IDOL–LDLR mechanism for feedback inhibition of cholesterol uptake is independent of and complementary to the SREBP pathway. Since the initial description of the LXR–IDOL pathway, biochemical studies have helped to define the structural basis for both IDOL target recognition and LDLR ubiquitin transfer. Recent work has also suggested links between IDOL and human lipid metabolism.
PMCID: PMC4280256  PMID: 22936343
22.  Palmoplantar keratoderma along with neuromuscular and metabolic phenotypes in Slurp1-deficient mice 
Mutations in SLURP1 cause mal de Meleda, a rare palmoplantar keratoderma (PPK). SLURP1 is a secreted protein that is expressed highly in keratinocytes but has also been identified elsewhere (e.g., spinal cord neurons). Here, we examined Slurp1-deficient mice (Slurp1−/−) created by replacing exon 2 with β-gal and neo cassettes. Slurp1−/− mice developed severe PPK characterized by increased keratinocyte proliferation, an accumulation of lipid droplets in the stratum corneum, and a water barrier defect. In addition, Slurp1−/− mice exhibited reduced adiposity, protection from obesity on a high-fat diet, low plasma lipid levels, and a neuromuscular abnormality (hind limb clasping). Initially, it was unclear whether the metabolic and neuromuscular phenotypes were due to Slurp1 deficiency because we found that the targeted Slurp1 mutation reduced the expression of several neighboring genes (e.g., Slurp2, Lypd2). We therefore created a new line of knockout mice (Slurp1X−/− mice) with a simple nonsense mutation in exon 2. The Slurp1X mutation did not reduce the expression of adjacent genes, but Slurp1X−/− mice exhibited all of the phenotypes observed in the original line of knockout mice. Thus, Slurp1 deficiency in mice elicits metabolic and neuromuscular abnormalities in addition to PPK.
PMCID: PMC4214150  PMID: 24499735
23.  Lipins, Lipinopathies, and the Modulation of Cellular Lipid Storage and Signaling 
Progress in lipid research  2013;52(3):10.1016/j.plipres.2013.04.001.
Members of the lipin protein family are phosphatidate phosphatase (PAP) enzymes, which catalyze the dephosphorylation of phosphatidic acid to diacylglycerol, the penultimate step in TAG synthesis. Lipins are unique among the glycerolipid biosynthetic enzymes in that they also promote fatty acid oxidation through their activity as co-regulators of gene expression by DNA-bound transcription factors. Lipin function has been evolutionarily conserved from a single ortholog in yeast to the mammalian family of three lipin proteins—lipin-1, lipin-2, and lipin-3. In mice and humans, the levels of lipin activity are a determinant of TAG storage in diverse cell types, and humans with deficiency in lipin-1 or lipin-2 have severe metabolic diseases. Recent work has highlighted the complex physiological interactions between members of the lipin protein family, which exhibit both overlapping and unique functions in specific tissues. The analysis of “lipinopathies” in mouse models and in humans has revealed an important role for lipin activity in the regulation of lipid intermediates (phosphatidate and diacylglycerol), which influence fundamental cellular processes including adipocyte and nerve cell differentiation, adipocyte lipolysis, and hepatic insulin signaling. The elucidation of lipin molecular and physiological functions could lead to novel approaches to modulate cellular lipid storage and metabolic disease.
PMCID: PMC3830937  PMID: 23603613
24.  Adipose subtype–selective recruitment of TLE3 or Prdm16 by PPARγ specifies lipid-storage versus thermogenic gene programs 
Cell metabolism  2013;17(3):423-435.
Transcriptional effectors of white adipocyte-selective gene expression have not been described. Here we show that TLE3 is a white-selective cofactor that acts reciprocally with the brown-selective cofactor Prdm16 to specify lipid storage and thermogenic gene programs. Occupancy of TLE3 and Prdm16 on certain promoters is mutually exclusive, due to the ability of TLE3 to disrupt the physical interaction between Prdm16 and PPARγ. When expressed at elevated levels in brown fat, TLE3 counters Prdm16, suppressing brown-selective genes and inducing white-selective genes, resulting in impaired fatty acid oxidation and thermogenesis. Conversely, mice lacking TLE3 in adipose tissue show enhanced thermogenesis in inguinal white adipose depots and are protected from age-dependent deterioration of brown adipose tissue function. Our results suggest that the establishment of distinct adipocyte phenotypes with different capacities for thermogenesis and lipid storage is accomplished in part through the cell type–selective recruitment of TLE3 or Prdm16 to key adipocyte target genes.
PMCID: PMC3626567  PMID: 23473036
25.  Targeting Protein Prenylation in Progeria 
Science translational medicine  2013;5(171):171ps3.
A clinical trial of a protein farnesyltransferase inhibitor (lonafarnib) for the treatment of Hutchinson-Gilford progeria syndrome (HGPS) was recently completed. Here, we discuss the mutation that causes HGPS, the rationale for inhibiting protein farnesyltransferase, the potential limitations of this therapeutic approach, and new potential strategies for treating the disease.
PMCID: PMC3725554  PMID: 23390246

Results 1-25 (62)