PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Reciprocal Metabolic Perturbations in the Adipose Tissue and Liver of GPIHBP1-deficient Mice 
Objective
Gpihbp1-deficient mice (Gpihbp1−/−) lack the ability to transport lipoprotein lipase to the capillary lumen, resulting in mislocalization of LPL within tissues, defective lipolysis of triglyceride-rich lipoproteins, and chylomicronemia. We asked whether GPIHBP1 deficiency and mislocalization of catalytically active LPL would alter the composition of triglycerides in adipose tissue or perturb the expression of lipid biosynthetic genes. We also asked whether perturbations in adipose tissue composition and gene expression, if they occur, would be accompanied by reciprocal metabolic changes in the liver.
Methods and Results
The chylomicronemia in Gpihbp1−/− mice was associated with reduced levels of essential fatty acids in adipose tissue triglycerides and increased expression of lipid biosynthetic genes. The liver exhibited the opposite changes—increased levels of essential fatty acids in triglycerides and reduced expression of lipid biosynthetic genes.
Conclusions
Defective lipolysis in Gpihbp1−/− mice causes reciprocal metabolic perturbations in adipose tissue and liver. In adipose tissue, the essential fatty acid content of triglycerides is reduced and lipid biosynthetic gene expression is increased, while the opposite changes occur in the liver.
doi:10.1161/ATVBAHA.111.241406
PMCID: PMC3281771  PMID: 22173228
lipoprotein lipase; hypertriglyceridemia; lipolysis; essential fatty acids; lipid biosynthetic genes
2.  Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons 
Molecular Biology of the Cell  2011;22(23):4683-4693.
Lamin B1 is essential for neuronal migration and progenitor proliferation during the development of the cerebral cortex. The observation of distinct phenotypes of Lmnb1- and Lmnb2-knockout mice and the differences in the nuclear morphology of cortical neurons in vivo suggest that lamin B1 and lamin B2 play distinct functions in the developing brain.
Neuronal migration is essential for the development of the mammalian brain. Here, we document severe defects in neuronal migration and reduced numbers of neurons in lamin B1–deficient mice. Lamin B1 deficiency resulted in striking abnormalities in the nuclear shape of cortical neurons; many neurons contained a solitary nuclear bleb and exhibited an asymmetric distribution of lamin B2. In contrast, lamin B2 deficiency led to increased numbers of neurons with elongated nuclei. We used conditional alleles for Lmnb1 and Lmnb2 to create forebrain-specific knockout mice. The forebrain-specific Lmnb1- and Lmnb2-knockout models had a small forebrain with disorganized layering of neurons and nuclear shape abnormalities, similar to abnormalities identified in the conventional knockout mice. A more severe phenotype, complete atrophy of the cortex, was observed in forebrain-specific Lmnb1/Lmnb2 double-knockout mice. This study demonstrates that both lamin B1 and lamin B2 are essential for brain development, with lamin B1 being required for the integrity of the nuclear lamina, and lamin B2 being important for resistance to nuclear elongation in neurons.
doi:10.1091/mbc.E11-06-0504
PMCID: PMC3226484  PMID: 21976703
3.  GPIHBP1 Is Responsible for the Entry of Lipoprotein Lipase into Capillaries 
Cell metabolism  2010;12(1):42-52.
SUMMARY
The lipolytic processing of triglyceride-rich lipoproteins by lipoprotein lipase (LPL) is the central event in plasma lipid metabolism, providing lipids for storage in adipose tissue and fuel for vital organs such as the heart. LPL is synthesized and secreted by myocytes and adipocytes but then finds its way into the lumen of capillaries, where it hydrolyzes lipoprotein triglycerides. The mechanism by which LPL reaches the lumen of capillaries represents one of the most persistent mysteries of plasma lipid metabolism. Here, we show that GPIHBP1 is responsible for the transport of LPL into capillaries. In Gpihbp1-deficient mice, LPL is mislocalized to the interstitial spaces surrounding myocytes and adipocytes. Also, we show that GPIHBP1 is located at the basolateral surface of capillary endothelial cells and actively transports LPL across endothelial cells. Our experiments define the function of GPIHBP1 in triglyceride metabolism and provide a mechanism for the transport of LPL into capillaries.
doi:10.1016/j.cmet.2010.04.016
PMCID: PMC2913606  PMID: 20620994
4.  An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria 
Human Molecular Genetics  2010;19(13):2682-2694.
Lamin A is formed from prelamin A by four post-translational processing steps—farnesylation, release of the last three amino acids of the protein, methylation of the farnesylcysteine and the endoproteolytic release of the C-terminal 15 amino acids (including the farnesylcysteine methyl ester). When the final processing step does not occur, a farnesylated and methylated prelamin A accumulates in cells, causing a severe progeroid disease, restrictive dermopathy (RD). Whether RD is caused by the retention of farnesyl lipid on prelamin A, or by the retention of the last 15 amino acids of the protein, is unknown. To address this issue, we created knock-in mice harboring a mutant Lmna allele (LmnanPLAO) that yields exclusively non-farnesylated prelamin A (and no lamin C). These mice had no evidence of progeria but succumbed to cardiomyopathy. We suspected that the non-farnesylated prelamin A in the tissues of these mice would be strikingly mislocalized to the nucleoplasm, but this was not the case; most was at the nuclear rim (indistinguishable from the lamin A in wild-type mice). The cardiomyopathy could not be ascribed to an absence of lamin C because mice expressing an otherwise identical knock-in allele yielding only wild-type prelamin A appeared normal. We conclude that lamin C synthesis is dispensable in mice and that the failure to convert prelamin A to mature lamin A causes cardiomyopathy (at least in the absence of lamin C). The latter finding is potentially relevant to the long-term use of protein farnesyltransferase inhibitors, which lead to an accumulation of non-farnesylated prelamin A.
doi:10.1093/hmg/ddq158
PMCID: PMC2883346  PMID: 20421363
5.  Investigating the purpose of prelamin A processing 
Nucleus  2011;2(1):4-9.
Lmna yields two major protein products in somatic cells, lamin C and prelamin A. Mature lamin A is produced from prelamin A by four posttranslational processing steps—farnesylation of a carboxyl-terminal cysteine, release of the last three amino acids of the protein, methylation of the farnesylcysteine, and the endoproteolytic release of the carboxyl-terminal 15 amino acids of the protein (including the farnesylcysteine methyl ester). Although the posttranslational processing of prelamin A has been conserved in vertebrate evolution, its physiologic significance remains unclear. Here we review recent studies in which we investigated prelamin A processing with Lmna knock-in mice that produce exclusively prelamin A (LmnaPLAO), mature lamin A (LmnaLAO) or nonfarnesylated prelamin A (LmnanPLAO). We found that the synthesis of lamin C is dispensable in laboratory mice, that the direct production of mature lamin A (completely bypassing all prelamin A processing) causes no discernable pathology in mice, and that exclusive production of nonfarnesylated prelamin A leads to cardiomyopathy.
doi:10.4161/nucl.2.1.13723
PMCID: PMC3104803  PMID: 21647293
prelamin A; progeria; restrictive dermopathy; protein farnesylation; cardiomyopathy

Results 1-6 (6)