PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  RUNNING MORE THAN THREE KILOMETERS DURING THE FIRST WEEK OF A RUNNING REGIMEN MAY BE ASSOCIATED WITH INCREASED RISK OF INJURY IN OBESE NOVICE RUNNERS 
ABSTRACT
Background:
Training guidelines for novice runners are needed to reduce the risk of injury. The purpose of this study was to investigate whether the risk of injury varied in obese and non‐obese individuals initiating a running program at different weekly distances.
Methods:
A volunteer sample of 749 of 1532 eligible healthy novice runners was included in a 3‐week observational explorative prospective cohort study. Runners were categorized into one of six strata based on their body mass index (BMI) (≤30=low; >30=high) and running distance after 1 week (<3 km = low; 3 to 6 km = medium; >6 km = high). Data was collected for three weeks for the six strata. The main outcome measure was running‐related injury.
Results:
Fifty‐six runners sustained a running‐related injury during the 3‐week data collection. A significantly greater number of individuals with BMI>30 sustained injuries if they ran between 3 to 6 km (cumulative risk difference (CRD) = 14.3% [95%CI: 3.3% to 25.3%], p<0.01) or more than 6 km (CRD = 16.2% [95%CI: 4.4% to 28.0%], p<0.01) the first week than individuals in the reference group (low distance and low BMI). The effect‐measure modification between high running distance and BMI on additive scale was positive (11.7% [‐3.6% to 27.0%], p=0.13). The number of obese individuals needed to change their running distance from high to low to avoid one injury was 8.5 [95%CI: 4.6 to 52].
Conclusions:
Obese individuals were at greater risk of injury if they exceeded 3 km during the first week of their running program. Because of a considerable injury risk compared with their non‐obese peers, individuals with a BMI>30 may be well advised to begin running training with an initial running distance of less than 3 km (1.9 miles) the first week of their running regime. Large‐scale trials are needed to further describe and document this relationship.
Level of Evidence:
Level 2b
PMCID: PMC4060311  PMID: 24944852
Body mass index; distance; injury risk; Running
2.  CLASSIFYING RUNNING‐RELATED INJURIES BASED UPON ETIOLOGY, WITH EMPHASIS ON VOLUME AND PACE 
Background and Purpose:
Many researchers acknowledge the importance of “training errors” as the main cause of running‐related injuries. The purpose of this clinical commentary is to present a theoretical framework for the assumption that some running‐related injuries among rear‐foot strikers develop due to rapidly changing running volume, while others develop due to rapidly changing running pace.
Description of Topic with Related Evidence:
Evidence from clinical and experimental studies is presented to support the assertion that rapid change in running volume may lead to the development of patellofemoral pain syndrome, iliotibial band syndrome, and patellar tendinopathy, while change in running pace may be associated with the development of achilles tendinopathy, gastrocnemius injuries, and plantar fasciitis.
Discussion/Relation to Clinical Practice:
If this assertion is correct, bias may be prevented in future studies by categorizing injuries into volume or pacing injuries. However, more work is needed to provide further evidence in support of this approach. Future investigations of the link between training patterns and injury development should be designed as large‐scale prospective studies using objective methods to quantify training patterns.
Level of evidence:
5
PMCID: PMC3625796  PMID: 23593555
Etiology; running pace; running‐related injury; training volume
3.  TRAINING ERRORS AND RUNNING RELATED INJURIES: A SYSTEMATIC REVIEW 
Purpose:
The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries.
Methods:
A systematic search was performed in PubMed, Web of Science, Embase, and SportDiscus. Studies were included if they examined novice, recreational, or elite runners between the ages of 18 and 65. Exposure variables were training characteristics defined as volume, distance or mileage, time or duration, frequency, intensity, speed or pace, or similar terms. The outcome of interest was Running Related Injuries (RRI) in general or specific RRI in the lower extremity or lower back. Methodological quality was evaluated using quality assessment tools of 11 to 16 items.
Results:
After examining 4561 titles and abstracts, 63 articles were identified as potentially relevant. Finally, nine retrospective cohort studies, 13 prospective cohort studies, six case-control studies, and three randomized controlled trials were included. The mean quality score was 44.1%. Conflicting results were reported on the relationships between volume, duration, intensity, and frequency and RRI.
Conclusion:
It was not possible to identify which training errors were related to running related injuries. Still, well supported data on which training errors relate to or cause running related injuries is highly important for determining proper prevention strategies. If methodological limitations in measuring training variables can be resolved, more work can be conducted to define training and the interactions between different training variables, create several hypotheses, test the hypotheses in a large scale prospective study, and explore cause and effect relationships in randomized controlled trials.
Level of evidence:
2a
PMCID: PMC3290924  PMID: 22389869
Duration; frequency; injuries; intensity; running; training; volume
4.  A Prospective Study on Time to Recovery in 254 Injured Novice Runners 
PLoS ONE  2014;9(6):e99877.
Objectives
Describe the diagnoses and the time to recovery of running-related injuries in novice runners.
Design
Prospective cohort study on injured runners.
Method
This paper is a secondary data analysis of a 933-person cohort study (DANO-RUN) aimed at characterizing risk factors for injury in novice runners. Among those sustaining running-related injuries, the types of injuries and time to recovery is described in the present paper. All injured runners were diagnosed after a thorough clinical examination and then followed prospectively during their recovery. If they recovered completely from injury, time to recovery of each injury was registered.
Results
A total of 254 runners were injured. The proportion of runners diagnosed with medial tibial stress syndrome was 15%, 10% for patellofemoral pain, 9% for medial meniscal injury, 7% for Achilles tendinopathy and 5% for plantar fasciitis. Among the 220 runners (87%) recovering from their injury, the median time to recovery was 71 days (minimum  = 9 days, maximum  = 617 days).
Conclusions
Medial tibial stress syndrome was the most common injury followed by patellofemoral pain, medial meniscal injury and Achilles tendinopathy. Half of the injured runners were unable to run 2×500 meters without pain after 10 weeks. Almost 5% of the injured runners received surgical treatment.
doi:10.1371/journal.pone.0099877
PMCID: PMC4055729  PMID: 24923269
5.  WEEKLY RUNNING VOLUME AND RISK OF RUNNING‐RELATED INJURIES AMONG MARATHON RUNNERS 
Purpose/Background:
The purpose of this study was to investigate if the risk of injury declines with increasing weekly running volume before a marathon race.
Methods:
The study was a retrospective cohort study on marathon finishers. Following a marathon, participants completed a web‐based questionnaire. The outcome of interest was a self‐reported running‐related injury. The injury had to be severe enough to cause a reduction in distance, speed, duration or frequency of running for at least 14 days. Primary exposure was self‐reported average weekly volume of running before the marathon categorized into below 30 km/week, 30 to 60 km/week, and above 60 km/week.
Results:
A total of 68 of the 662 respondents sustained an injury. When adjusting for previous injury and previous marathons, the relative risk (RR) of suffering an injury rose by 2.02 [95% CI: 1.26; 3.24], p < 0.01, among runners with an average weekly training volume below 30 km/week compared with runners with an average weekly training volume of 30‐60 km/week. No significant differences were found between runners exceeding 60 km/week and runners running 30‐60 km/week (RR=1.13 [0.5;2.8], p=0.80).
Conclusions:
Runners may be advised to run a minimum of 30 km/week before a marathon to reduce their risk of running‐related injury.
Level of Evidence:
2b
PMCID: PMC3625790  PMID: 23593549
Running‐related injury; marathon; risk factors; running volume.
6.  Classification of the height and flexibility of the medial longitudinal arch of the foot 
Background
The risk of developing injuries during standing work may vary between persons with different foot types. High arched and low arched feet, as well as rigid and flexible feet, are considered to have different injury profiles, while those with normal arches may sustain fewer injuries. However, the cut-off values for maximum values (subtalar position during weight-bearing) and range of motion (ROM) values (difference between subtalar neutral and subtalar resting position in a weight-bearing condition) for the medial longitudinal arch (MLA) are largely unknown. The purpose of this study was to identify cut-off values for maximum values and ROM of the MLA of the foot during static tests and to identify factors influencing foot posture.
Methods
The participants consisted of 254 volunteers from Central and Northern Denmark (198 m/56 f; age 39.0 ± 11.7 years; BMI 27.3 ± 4.7 kg/m2). Navicular height (NH), longitudinal arch angle (LAA) and Feiss line (FL) were measured for either the left or the right foot in a subtalar neutral position and subtalar resting position. Maximum values and ROM were calculated for each test. The 95% and 68% prediction intervals were used as cut-off limits. Multiple regression analysis was used to detect influencing factors on foot posture.
Results
The 68% cut-off values for maximum MLA values and MLA ROM for NH were 3.6 to 5.5 cm and 0.6 to 1.8 cm, respectively, without taking into account the influence of other variables. Normal maximum LAA values were between 131 and 152° and normal LAA ROM was between -1 and 13°. Normal maximum FL values were between -2.6 and -1.2 cm and normal FL ROM was between -0.1 and 0.9 cm. Results from the multivariate linear regression revealed an association between foot size with FL, LAA, and navicular drop.
Conclusions
The cut-off values presented in this study can be used to categorize people performing standing work into groups of different foot arch types. The results of this study are important for investigating a possible link between arch height and arch movement and the development of injuries.
doi:10.1186/1757-1146-5-3
PMCID: PMC3354337  PMID: 22340625
Medial longitudinal arch; Longitudinal arch angle; Navicular drop; Feiss line
7.  THE NAVICULAR POSITION TEST – A RELIABLE MEASURE OF THE NAVICULAR BONE POSITION DURING REST AND LOADING 
Background:
Lower limb injuries are a large problem in athletes. However, there is a paucity of knowledge on the relationship between alignment of the medial longitudinal arch (MLA) of the foot and development of such injuries. A reliable and valid test to quantify foot type is needed to be able to investigate the relationship between arch type and injury likelihood. Feiss Line is a valid clinical measure of the MLA. However, no study has investigated the reliability of the test.
Objectives:
The purpose was to describe a modified version of the Feiss Line test and to determine the intra- and inter-tester reliability of this new foot alignment test. To emphasize the purpose of the modified test, the authors have named it The Navicular Position Test.
Methods:
Intra- and inter-tester reliability were evaluated of The Navicular Position Test with the use of ICC (interclass correlation coefficient) and Bland-Altman limits of agreement on 43 healthy, young, subjects.
Results:
Inter-tester mean difference -0.35 degrees [–1.32; 0.62] p = 0.47. Bland-Altman limits of agreement –6.55 to 5.85 degrees, ICC = 0.94. Intra-tester mean difference 0.47 degrees [–0.57; 1.50] p = 0.37. Bland-Altman limits of agreement –6.15 to 7.08 degrees, ICC = 0.91.
Discussion:
The present data support The Navicular Position Test as a reliable test of the navicular bone position during rest and loading measured in a simple test set-up.
Conclusion:
The Navicular Position Test was shown to have a high intraday-, intra- and inter-tester reliability. When cut off values to categorize the MLA into planus, rectus, or cavus feet, has been determined and presented, the test could be used in prospective observational studies investigating the role of the arch type on the development of various lower limb injuries.
PMCID: PMC3163999  PMID: 21904698
Foot; Feiss Line; reliability; alignment; pronation

Results 1-7 (7)