Search tips
Search criteria

Results 1-25 (70)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
1.  Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex-E 
Science (New York, N.Y.)  2016;351(6274):714-720.
Major histocompatibility complex (MHC)-E is a highly conserved, ubiquitously expressed, non-classical MHC-Ib molecule with limited polymorphism primarily involved in NK cell regulation. We found that vaccination of rhesus macaques (RM) with ΔRh157.5/.4 Rhesus Cytomegalovirus (RhCMV) vectors results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8α/β+ T cells, approximately 4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side chain interactions within a stable, open binding groove. Since MHC-E is up-regulated on cells infected with HIV/SIV and other persistent viruses to evade NK cell activity, MHC-E-restricted CD8+ T cell responses have the potential to exploit pathogen immune evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.
PMCID: PMC4769032  PMID: 26797147
2.  Cross-Species Rhesus Cytomegalovirus Infection of Cynomolgus Macaques 
PLoS Pathogens  2016;12(11):e1006014.
Cytomegaloviruses (CMV) are highly species-specific due to millennia of co-evolution and adaptation to their host, with no successful experimental cross-species infection in primates reported to date. Accordingly, full genome phylogenetic analysis of multiple new CMV field isolates derived from two closely related nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM), revealed distinct and tight lineage clustering according to the species of origin, with MCM CMV isolates mirroring the limited genetic diversity of their primate host that underwent a population bottleneck 400 years ago. Despite the ability of Rhesus CMV (RhCMV) laboratory strain 68–1 to replicate efficiently in MCM fibroblasts and potently inhibit antigen presentation to MCM T cells in vitro, RhCMV 68–1 failed to productively infect MCM in vivo, even in the absence of host CD8+ T and NK cells. In contrast, RhCMV clone 68–1.2, genetically repaired to express the homologues of the HCMV anti-apoptosis gene UL36 and epithelial cell tropism genes UL128 and UL130 absent in 68–1, efficiently infected MCM as evidenced by the induction of transgene-specific T cells and virus shedding. Recombinant variants of RhCMV 68–1 and 68–1.2 revealed that expression of either UL36 or UL128 together with UL130 enabled productive MCM infection, indicating that multiple layers of cross-species restriction operate even between closely related hosts. Cumulatively, these results implicate cell tropism and evasion of apoptosis as critical determinants of CMV transmission across primate species barriers, and extend the macaque model of human CMV infection and immunology to MCM, a nonhuman primate species with uniquely simplified host immunogenetics.
Author Summary
Nonhuman primates are excellent models of HCMV infection and immunity, and their CMVs closely resemble HCMV in genomic organization and coding potential. Here, we expand the existing models by isolating new full-length, non-human primate CMV strains that more closely resemble primary HCMV isolates. In addition, we identify determinants needed for recombinant clones of RhCMV to infect MCM both in vitro and in vivo. Given their simplified immunogenetics, these results enable the use of MCM to deepen our understanding of CMV immunology.
PMCID: PMC5102353  PMID: 27829026
3.  Humanized Mouse Models of Human Cytomegalovirus Infection 
The generation of humanized mouse models in which immune deficient mice are engrafted with human tissues allows for the direct in vivo investigation of human-restricted viruses. These humanized mouse models have been developed and improved over the past 30 years. It is now possible to achieve high levels of human cell engraftment producing human myeloid and lymphoid lineage cells. Humanized mouse models have been increasingly utilized in the study of human cytomegalovirus (HCMV), a human-specific beta-herpesvirus that infects myeloprogenitor cells and establishes a life-long latency in the infected host. This review focuses on the strengths and limitations of the current humanized mouse models used to study HCMV replication, pathogenesis and treatment.
PMCID: PMC4599783  PMID: 26118890
4.  Complex Interplay of the UL136 Isoforms Balances Cytomegalovirus Replication and Latency 
mBio  2016;7(2):e01986-15.
Human cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34+ hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2Rγcnull humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34+ HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection.
The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by the UL136 gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay between UL136 protein isoforms and define UL136 as an important regulator of HCMV persistence.
PMCID: PMC4810493  PMID: 26933055
5.  Cytomegalovirus microRNAs 
The discovery that animals, plants and DNA viruses encode microRNAs (miRNAs) has transformed our understanding of the regulation of gene expression. miRNAs are ubiquitous small non-coding RNAs that regulate gene expression post-transcriptionally, generally by binding to sites within the 3’ untranslated regions (UTR) of messenger RNA (mRNA) transcripts. To date, over 250 viral miRNAs have been identified primarily in members of the herpesvirus family. These viral miRNAs target both viral and cellular genes in order to regulate viral replication, the establishment and maintenance of viral latency, cell survival, and innate and adaptive immunity. This review will focus on our current knowledge of the targets and functions of human cytomegalovirus (HCMV) miRNAs and their functional equivalents in other herpesviruses.
PMCID: PMC4149926  PMID: 24769092
6.  Human Cytomegalovirus miR-UL112-3p Targets TLR2 and Modulates the TLR2/IRAK1/NFκB Signaling Pathway 
PLoS Pathogens  2015;11(5):e1004881.
Human Cytomegalovirus (HCMV) encodes multiple microRNAs (miRNAs) whose functions are just beginning to be uncovered. Using in silico approaches, we identified the Toll-Like Receptor (TLR) innate immunity pathway as a possible target of HCMV miRNAs. Luciferase reporter assay screens further identified TLR2 as a target of HCMV miR-UL112-3p. TLR2 plays a major role in innate immune response by detecting both bacterial and viral ligands, including HCMV envelope proteins gB and gH. TLR2 activates a variety of signal transduction routes including the NFκB pathway. Furthermore, TLR2 plays an important role in controlling CMV infection both in humans and in mice. Immunoblot analysis of cells transfected with a miR-UL112-3p mimic revealed that endogenous TLR2 is down-regulated by miR-UL112-3p with similar efficiency as a TLR2-targeting siRNA (siTLR2). We next found that TLR2 protein level decreases at late times during HCMV infection and correlates with miR-UL112-3p accumulation in fibroblasts and monocytic THP1 cells. Confirming direct miR-UL112-3p targeting, down-regulation of endogenous TLR2 was not observed in cells infected with HCMV mutants deficient in miR-UL112-3p expression, but transfection of miR-UL112-3p in these cells restored TLR2 down-regulation. Using a NFκB reporter cell line, we found that miR-UL112-3p transfection significantly inhibited NFκB-dependent luciferase activity with similar efficiency as siTLR2. Consistent with this observation, miR-UL112-3p transfection significantly reduced the expression of multiple cytokines (IL-1β, IL-6 and IL-8) upon stimulation with a TLR2 agonist. Finally, miR-UL112-3p transfection significantly inhibited the TLR2-induced post-translational activation of IRAK1, a kinase located in the upstream section of the TLR2/NFκB signaling axis. To our knowledge, this is the first identified mechanism of TLR2 modulation by HCMV and is the first report of functional targeting of TLR2 by a viral miRNA. These results provide a novel mechanism through which a HCMV miRNA regulates the innate immune response by down-regulating TLR-2 expression.
Author Summary
Human cytomegalovirus (HCMV) is a herpesvirus that is a leading cause of congenital defects in newborns and can be deadly in people with weakened immunity. HCMV has developed multiple strategies to escape the host immune system. Among those, microRNAs (miRNAs) are short regulatory RNAs that target gene transcripts through sequence complementarity. HCMV expresses more than 20 miRNAs and several of them, in particular miR-UL112-3p, have been demonstrated to cooperate in evading the host antiviral immune response during infection. In this work we identified TLR2, a cell surface receptor that plays an important role in the detection and control of CMV infection, as a novel target of miR-UL112-3p. We demonstrate that miR-UL112-3p efficiently down-regulates endogenous TLR2 during infection, causing significant inhibition of the downstream signaling cascade. This work provides the first identified mechanism of TLR2 modulation by HCMV and is the first report of TLR2 targeting by a viral miRNA.
PMCID: PMC4425655  PMID: 25955717
7.  Cytomegalovirus miRNAs target secretory pathway genes to facilitate formation of the virion assembly compartment and reduce cytokine secretion 
Cell host & microbe  2014;15(3):363-373.
Herpesviruses, including human cytomegalovirus (HCMV), encode multiple microRNAs (miRNA) whose targets are just being uncovered. Moreover, miRNA function during the virus life cycle is relatively unknown. We find that HCMV miRs UL112-1, US5-1, and US5-2 target multiple components of the host secretory pathway, including VAMP3, RAB5C, RAB11A, SNAP23, and CDC42. A HCMV miR UL112-1, US5-1, and US5-2 triple mutant displayed aberrant morphogenesis of the virion assembly compartment (VAC), increased secretion of non-infectious particles, and increased IL-6 release from infected cells. Ectopic expression of UL112-1, US5-1, and US5-2 or siRNAs directed against RAB5C, RAB11A, SNAP23, and CDC42 caused the loss of Golgi stacks with reorganization into structures that resemble the VAC and a decrease in cytokine release. These observations indicate that multiple HCMV miRNAs coordinately regulate reorganization of the secretory pathway to control cytokine secretion and facilitate formation of the VAC for efficient infectious virus production.
PMCID: PMC4029511  PMID: 24629342
8.  HCMV infection of humanized mice after transplantation of G-CSF mobilized peripheral blood stem cells from HCMV-seropositive donors 
Human cytomegalovirus (HCMV) infection remains a significant problem in the setting of peripheral blood stem cell transplant (PBSCT), including primary infection resulting from transmission from a seropositive donor to a seronegative recipient (D+/R−). The lack of an animal model suitable for studying HCMV transmission after PBSCT is a major barrier in understanding this process and, consequently, the development of novel interventions to prevent HCMV infection. Our previous work demonstrated that human CD34+ progenitor cell engrafted NOD-scid IL2Rγcnull (NSG) mice support latent HCMV infection after direct inoculation, and reactivation after treatment with G-CSF. To more accurately recapitulate HCMV infection in the D+/R− PBSCT setting, granulocyte colony stimulating factor (G-CSF) mobilized peripheral blood stem cells (PBSCs) from seropositive donors were used to engraft NSG mice. All recipient mice demonstrated evidence of HCMV infection in liver, spleen, and bone marrow. These observations validate the NSG mouse model as a means to study HCMV transmission during PBSCT.
PMCID: PMC3922710  PMID: 24161922
9.  Inhibition of Dengue Virus Replication by a Class of Small-Molecule Compounds That Antagonize Dopamine Receptor D4 and Downstream Mitogen-Activated Protein Kinase Signaling 
Journal of Virology  2014;88(10):5533-5542.
Dengue viruses (DENV) are endemic pathogens of tropical and subtropical regions that cause significant morbidity and mortality worldwide. To date, no vaccines or antiviral therapeutics have been approved for combating DENV-associated disease. In this paper, we describe a class of tricyclic small-molecule compounds—dihydrodibenzothiepines (DHBTs), identified through high-throughput screening—with potent inhibitory activity against DENV serotype 2. SKI-417616, a highly active representative of this class, displayed activity against all four serotypes of DENV, as well as against a related flavivirus, West Nile virus (WNV), and an alphavirus, Sindbis virus (SINV). This compound was characterized to determine its mechanism of antiviral activity. Investigation of the stage of the viral life cycle affected revealed that an early event in the life cycle is inhibited. Due to the structural similarity of the DHBTs to known antagonists of the dopamine and serotonin receptors, we explored the roles of two of these receptors, serotonin receptor 2A (5HTR2A) and the D4 dopamine receptor (DRD4), in DENV infection. Antagonism of DRD4 and subsequent downstream phosphorylation of epidermal growth factor receptor (EGFR)-related kinase (ERK) were found to impact DENV infection negatively, and blockade of signaling through this network was confirmed as the mechanism of anti-DENV activity for this class of compounds.
IMPORTANCE The dengue viruses are mosquito-borne, reemerging human pathogens that are the etiological agents of a spectrum of febrile diseases. Currently, there are no approved therapeutic treatments for dengue-associated disease, nor is there a vaccine. This study identifies a small molecule, SKI-417616, with potent anti-dengue virus activity. Further analysis revealed that SKI-417616 acts through antagonism of the host cell dopamine D4 receptor and subsequent repression of the ERK phosphorylation pathway. These results suggest that SKI-417616, or other compounds targeting the same cellular pathways, may have therapeutic potential for the treatment of dengue virus infections.
PMCID: PMC4019099  PMID: 24599995
10.  Human Cytomegalovirus-Encoded pUL7 Is a Novel CEACAM1-Like Molecule Responsible for Promotion of Angiogenesis 
mBio  2014;5(6):e02035-14.
Persistent human cytomegalovirus (HCMV) infection has been linked to several diseases, including atherosclerosis, transplant vascular sclerosis (TVS), restenosis, and glioblastoma. We have previously shown that factors secreted from HCMV-infected cells induce angiogenesis and that this process is due, at least in part, to increased secretion of interleukin-6 (IL-6). In order to identify the HCMV gene(s) responsible for angiogenesis promotion, we constructed a large panel of replication-competent HCMV recombinants. One HCMV recombinant deleted for UL1 to UL10 was unable to induce secretion of factors necessary for angiogenesis. Fine mapping using additional HCMV recombinants identified UL7 as a viral gene required for production of angiogenic factors from HCMV-infected cells. Transient expression of pUL7 induced phosphorylation of STAT3 and ERK1/2 MAP kinases and production of proangiogenic factors, including IL-6. Addition of recombinant pUL7 to cells was sufficient for angiogenesis and was again associated with increased IL-6 expression. Analysis of the UL7 structure revealed a conserved domain similar to the immunoglobulin superfamily domain and related to the N-terminal V-like domain of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Our report therefore identifies UL7 as a novel HCMV-encoded molecule that is both structurally and functionally related to cellular CEACAM1, a proangiogenic factor highly expressed during vasculogenesis.
A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection.
PMCID: PMC4217178  PMID: 25352622
11.  Functional genomics approaches to understand cytomegalovirus replication, latency and pathogenesis 
Current opinion in virology  2013;3(4):408-415.
Cytomegalovirus (CMV) is a species-specific herpesvirus that is ubiquitous in the population and has the potential to cause significant disease in immunocompromised individuals as well as in congenitally infected infants. CMV establishes latency in cells of the myeloid lineage following primary infection. High-throughput functional genomics approaches have provided insight into the mechanisms of CMV replication, but although CMV latency cell models have been useful in elucidating the mechanisms of viral latency and reactivation, omics approaches have proven challenging in these cell systems. This review will summarize the current state of knowledge concerning the use of functional genomics technologies to understand mechanisms of CMV replication, latency and pathogenesis.
PMCID: PMC3748260  PMID: 23816389
12.  Immune clearance of highly pathogenic SIV infection 
Nature  2013;502(7469):100-104.
Established infections with the human and simian immunodeficiency viruses (HIV, SIV) are thought to be permanent with even the most effective immune responses and anti-retroviral therapies (ART) only able to control, but not clear, these infections1–4. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that ~50% of rhesus macaques (RM) vaccinated with SIV protein-expressing Rhesus Cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviremic control of infection with highly pathogenic SIVmac2395. Here, we demonstrate that regardless of route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and hematogenous viral dissemination, and that replication-competent SIV persists in multiple sites for weeks to months. However, over time, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma or tissue-associated virus using ultrasensitive assays, and loss of T cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive RT-PCR and PCR analysis of tissues from RhCMV/SIV vector-protected RM necropsied 69–172 weeks after challenge did not detect SIV RNA or DNA over background, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million hematolymphoid cells to naïve RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T cell-mediated immune surveillance elicited and maintained by CMV vectors.
PMCID: PMC3849456  PMID: 24025770
13.  Flaviviruses Are Sensitive to Inhibition of Thymidine Synthesis Pathways 
Journal of Virology  2013;87(17):9411-9419.
Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.
PMCID: PMC3754125  PMID: 23824813
Science (New York, N.Y.)  2013;340(6135):10.1126/science.1237874.
CD8+ T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of anti-pathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing Rhesus Cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8+ T cells that recognize unusual, diverse and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8+ T cell responses is suppressed by the RhCMV-encoded Rh189 (US11) gene, and the promiscuous MHC class I- and class II-restricted CD8+ T cell responses only occur in the absence of the Rh157.4-.6 (UL128-131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8+ T cell epitope recognition.
PMCID: PMC3816976  PMID: 23704576
15.  The functions of herpesvirus-encoded microRNAs 
Medical microbiology and immunology  2007;197(2):261-267.
Bioinformatic and direct cloning approaches have led to the identification of over 100 novel miRNAs expressed in DNA viruses, although the function of the majority of these small regulatory RNA molecules is unclear. Recently, a number of reports have now identified potential targets of viral miRNAs, including cellular and viral genes as well as an ortholog of an important immune-regulatory cellular miRNA. In this review, we will cover the identification and characterization of miRNAs expressed in the herpesvirus family and discuss the potential significance of their role in viral infection.
PMCID: PMC3670153  PMID: 18087721
Herpesvirus; microRNA; miRNA; HCMV; HSV; KSHV; EBV; Virus
16.  Maintaining Participation and Momentum in Longitudinal Research Involving High-Risk Families 
Journal of Nursing Scholarship  2012;44(2):120-126.
The purpose of the current study was to identify and describe strategies available to optimize retention of a high-risk research cohort and assist in the recovery of study participants following participant dropout.
Design and Methods
The Maternal Lifestyle Study (MLS), which investigated the effects of prenatal substance exposure (cocaine or opiates) on child outcome, is a prospective longitudinal follow-up study that extended from birth through 15 years of age. Retention strategies to maximize participation and factors that might negatively impact compliance were examined over the course of five follow-up phases.
At the conclusion of the 15-year visits, MLS had successfully maintained compliance at 76%. Retention rates did not differ by exposure group.
Maintaining ongoing participation of enrolled study subjects is a critical element of any successful longitudinal study. Strategies that can be used to reengage and maintain participants in longitudinal research include persistence, flexibility with scheduling, home visits, long-distance trips, increased incentives, and development of a computerized tracking system. Establishing rapport with families and ensuring confidentiality contributed to overall participant retention. The use of multiple tracking techniques is essential.
Clinical Relevance
Researchers are challenged to maintain participants in longitudinal studies to ensure the integrity of their research.
PMCID: PMC3366028  PMID: 22458928
Longitudinal research; participant retention; tracking; compliance
17.  Rhesus Cytomegalovirus Encodes Seventeen MicroRNAs that are Differentially Expressed in vitro and in vivo 
Virology  2012;425(2):133-142.
Human cytomegalovirus (HCMV) miRNAs are important for regulation of viral infection and evasion of host immune responses. Unfortunately, the importance of HCMV miRNAs cannot be addressed in vivo due to the species specificity of CMVs. Rhesus CMV (RhCMV) infection of rhesus macaques provides an important model system for HCMV pathogenesis due to the genetic similarity between the viruses. In this report, seventeen RhCMV miRNAs were identified using Next Generation Sequencing. In fibroblasts, RhCMV miRNAs associate with Argonaute proteins and display several patterns of expression, including an early peak in expression followed by decline and accumulation throughout infection. Additionally, RhCMV encodes an HCMV miR-US5-2 homologue that targets the 3’ UTR of RhCMV US7. Finally, examination of salivary gland tissue from infected animals revealed the presence of a subset of viral miRNAs. This study highlights the importance of the RhCMV model system for evaluating the roles of CMV miRNAs during viral infection.
PMCID: PMC3592565  PMID: 22305624
RhCMV; HCMV; miRNA; endothelial cells; salivary gland; miR-US5-2
18.  Acceleration of Allograft Failure by Cytomegalovirus 
Current opinion in immunology  2007;19(5):577-582.
A number of human herpes viruses are important opportunistic pathogens that have been associated with increased morbidity and mortality in transplant recipients including human cytomegalovirus (HCMV), HHV6, HHV7, HHV8 as well as HSV-1, VZV. However, HCMV has been linked both epidemiologically and through the use of animal models to the acceleration of acute and chronic allograft rejection. This review will cover the pathophysiology, epidemiology and mechanisms of CMV-associated disease in the setting of transplantation.
PMCID: PMC3509935  PMID: 17716883
19.  Human Cytomegalovirus US28: A Functionally Selective Chemokine Binding Receptor 
The Human Cytomegalovirus (HCMV)-encoded chemokine receptor US28 is the most well-characterized of the four chemokine receptor-like molecules found in the HCMV genome. US28 been studied as an important virulence factor for HCMV-mediated vascular disease and, more recently, in models of HCMV-associated malignancy. US28 is a rare multi-chemokine family binding receptor with the ability to bind ligands from two distinct chemokine classes. Ligand binding to US28 activates cell-type and ligand-specific signaling pathways leading to cellular migration, an example receptor functional selectivity. Additionally, US28 has been demonstrated to constitutively activate PLC and NFkB. Understanding the structure/function relationships between US28, its ligands and intracellular signaling molecules will provide essential clues for effective pharmacological targeting this multifunctional chemokine receptor.
PMCID: PMC3496389  PMID: 19594424
20.  Human Cytomegalovirus US7 Is Regulated Synergistically by Two Virally Encoded MicroRNAs and by Two Distinct Mechanisms ▿ 
Journal of Virology  2011;85(22):11938-11944.
Human cytomegalovirus (HCMV) encodes at least 14 microRNAs (miRNAs) that act posttranscriptionally to repress gene expression. Although several HCMV miRNA targets of both cellular and viral origin have been identified, our knowledge of their function remains limited. HCMV miRNA targets, as well as phenotypes associated with HCMV miRNA mutants, have been difficult to identify since the downregulation of targets by a single miRNA is often less than 2-fold. Several factors can contribute to the strength of repression, including the mechanism of translational inhibition, the degree of complementarity between the miRNA and target mRNA, the number of binding sites for one miRNA, and cooperativity or antagonism between miRNAs. To determine the effect of multiple miRNAs on one gene, we examined the repression of a viral gene, US7. Here we demonstrate that the HCMV-encoded miRNAs miR-US5-1 and miR-US5-2 function in a highly synergistic manner to regulate US7, even at very low miRNA concentrations. Regulation of US7 involves three functional miRNA binding sites: two that are completely complementary to the 3′ untranslated region (3′UTR) and one that is imperfectly matched. Surprisingly, we observed equal contributions to inhibition from both complete and partially complementary sites, and repression was not completely abrogated until all three sites were mutated simultaneously. We also observed that the miRNA binding sites did not follow the spacing constraints for corepressive miRNAs observed in earlier reports. These results underscore the importance of evaluating the contribution of multiple miRNAs on gene regulation and shed new insight into miRNA:mRNA interactions.
PMCID: PMC3209316  PMID: 21900172
21.  Inhibition of Dengue Virus Infections in Cell Cultures and in AG129 Mice by a Small Interfering RNA Targeting a Highly Conserved Sequence ▿  
Journal of Virology  2011;85(19):10154-10166.
The dengue viruses (DENVs) exist as numerous genetic strains that are grouped into four antigenically distinct serotypes. DENV strains from each serotype can cause severe disease and threaten public health in tropical and subtropical regions worldwide. No licensed antiviral agent to treat DENV infections is currently available, and there is an acute need for the development of novel therapeutics. We found that a synthetic small interfering RNA (siRNA) (DC-3) targeting the highly conserved 5′ cyclization sequence (5′CS) region of the DENV genome reduced, by more than 100-fold, the titers of representative strains from each DENV serotype in vitro. To determine if DC-3 siRNA could inhibit DENV in vivo, an “in vivo-ready” version of DC-3 was synthesized and tested against DENV-2 by using a mouse model of antibody-dependent enhancement of infection (ADE)-induced disease. Compared with the rapid weight loss and 5-day average survival time of the control groups, mice receiving the DC-3 siRNA had an average survival time of 15 days and showed little weight loss for approximately 12 days. DC-3-treated mice also contained significantly less virus than control groups in several tissues at various time points postinfection. These results suggest that exogenously introduced siRNA combined with the endogenous RNA interference processing machinery has the capacity to prevent severe dengue disease. Overall, the data indicate that DC-3 siRNA represents a useful research reagent and has potential as a novel approach to therapeutic intervention against the genetically diverse dengue viruses.
PMCID: PMC3196423  PMID: 21795337
22.  A Novel Human Cytomegalovirus Locus Modulates Cell Type-Specific Outcomes of Infection 
PLoS Pathogens  2011;7(12):e1002444.
Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb′ that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb′-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb′ sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγcnull-humanized mouse model. The UL133-UL138NULL virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations.
Author Summary
Human cytomegalovirus is a ubiquitous herpesvirus that, like all herpesviruses, establishes a life long relationship with its host through a latent infection. The molecular basis of viral latency is poorly understood, in part, because viral determinants of latency and the corresponding virus-host interactions are not well defined. We have identified a polycistronic locus encoding the pUL138 latency determinant, as well as three previously uncharacterized proteins, pUL133, pUL135, and pUL136. We have characterized this novel locus, the proteins it encodes and demonstrated the role of the locus in modulating viral replication depending on the context of infection. While this locus is dispensable for productive replication in fibroblasts, it adversely impacts virus replication in primary hematopoietic cells, suggesting a role in establishing latency. Surprisingly, the locus is required for efficient replication in primary human endothelial cells. To our knowledge this is the first demonstration of a viral locus that can have positive, negative, or null effects on viral replication depending on the context of infection. Our work defines exciting new primate strain-specific determinants mediating viral replication and latency and exemplifies the complex nature of virus-host interactions in cytomegalovirus infection.
PMCID: PMC3248471  PMID: 22241980
23.  Profound early control of highly pathogenic SIV by an effector-memory T cell vaccine 
Nature  2011;473(7348):523-527.
The AIDS-causing lentiviruses HIV and SIV effectively evade host immunity, and once established, infections with these viruses are only rarely controlled by immunologic mechanisms1-3. However, the initial establishment of infection in the first few days after mucosal exposure, prior to viral dissemination and massive replication, may be more vulnerable to immune control4. Here, we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors5 establish indefinitely persistent, high frequency, SIV-specific effector-memory T cell (TEM) responses at potential sites of SIV replication in rhesus macaques (RM) and stringently control highly pathogenic SIVmac239 infection early after mucosal challenge. Thirteen of 24 RM receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (vs. 0 of 9 DNA/Ad5-vaccinated RM) manifested early complete control of SIV (undetectable plasma virus), and in 12/13 of these RM, we observed long-term (≥1 year) protection characterized by: 1) occasional blips of plasma viremia that ultimately waned; 2) predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; 3) no depletion of effector site CD4+ memory T cells; 4) no induction or boosting of SIVenv-specific antibodies (Abs); and 5) induction and then loss of T cell responses to an SIV protein (vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8+ T cell responses in the vaccine phase, and occurred without anamnestic T cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8+ or CD4+ lymphocyte depletion, and at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations suggesting the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated TEM responses might significantly contribute to an efficacious HIV/AIDS vaccine.
PMCID: PMC3102768  PMID: 21562493
24.  BST2/Tetherin Enhances Entry of Human Cytomegalovirus 
PLoS Pathogens  2011;7(11):e1002332.
Interferon-induced BST2/Tetherin prevents budding of vpu-deficient HIV-1 by tethering mature viral particles to the plasma membrane. BST2 also inhibits release of other enveloped viruses including Ebola virus and Kaposi's sarcoma associated herpesvirus (KSHV), indicating that BST2 is a broadly acting antiviral host protein. Unexpectedly however, recovery of human cytomegalovirus (HCMV) from supernatants of BST2-expressing human fibroblasts was increased rather than decreased. Furthermore, BST2 seemed to enhance viral entry into cells since more virion proteins were released into BST2-expressing cells and subsequent viral gene expression was elevated. A significant increase in viral entry was also observed upon induction of endogenous BST2 during differentiation of the pro-monocytic cell line THP-1. Moreover, treatment of primary human monocytes with siRNA to BST2 reduced HCMV infection, suggesting that BST2 facilitates entry of HCMV into cells expressing high levels of BST2 either constitutively or in response to exogenous stimuli. Since BST2 is present in HCMV particles we propose that HCMV entry is enhanced via a reverse-tethering mechanism with BST2 in the viral envelope interacting with BST2 in the target cell membrane. Our data suggest that HCMV not only counteracts the well-established function of BST2 as inhibitor of viral egress but also employs this anti-viral protein to gain entry into BST2-expressing hematopoietic cells, a process that might play a role in hematogenous dissemination of HCMV.
Author Summary
Human Cytomegalovirus (HCMV) persistently infects a large proportion of the human population without causing any symptoms. The establishment and maintenance of HCMV in infected individuals is thought to be facilitated by the ability of HCMV to modulate innate and adaptive immune responses by the host. BST2, aka Tetherin, was recently shown to be an innate immune response molecule that is induced by the antiviral cytokine interferon. BST2 has been shown to prevent the release of many different viruses, including the human immunodeficiency virus and Ebola virus, from infected cells by tethering the viral envelope to the host cell membrane. Unexpectedly however, we observed that BST2 had the opposite effect on infection by HCMV. Cells expressing BST2 became more susceptible to infection with HCMV. Thus, HCMV seems to use this antiviral protein to gain access to cells that naturally express high levels of BST2 such as macrophages.
PMCID: PMC3207899  PMID: 22072961
25.  High-Content Assay to Identify Inhibitors of Dengue Virus Infection 
Dengue virus (DENV) infections are vectored by mosquitoes and constitute one of the most prevalent infectious diseases in many parts of the world, affecting millions of people annually. Current treatments for DENV infections are nonspecific and largely ineffective. In this study, we describe the adaptation of a high-content cell-based assay for screening against DENV-infected cells to identify inhibitors and modulators of DENV infection. Using this high-content approach, we monitored the inhibition of test compounds on DENV protein production by means of immunofluorescence staining of DENV glycoprotein envelope, simultaneously evaluating cytotoxicity in HEK293 cells. The adapted 384-well microtiter-based assay was validated using a small panel of compounds previously reported as having inhibitory activity against DENV infections of cell cultures, including compounds with antiviral activity (ribavirin), inhibitors of cellular signaling pathways (U0126), and polysaccharides that are presumed to interfere with virus attachment (carrageenan). A screen was performed against a collection of 5,632 well-characterized bioactives, including U.S. Food and Drug Administration–approved drugs. Assay control statistics show an average Z' of 0.63, indicative of a robust assay in this cell-based format. Using a threshold of >80% DENV inhibition with <20% cellular cytotoxicity, 79 compounds were initially scored as positive hits. A follow-up screen confirmed 73 compounds with IC50 potencies ranging from 60 nM to 9 μM and yielding a hit rate of 1.3%. Over half of the confirmed hits are known to target transporters, receptors, and protein kinases, providing potential opportunity for drug repurposing to treat DENV infections. In summary, this assay offers the opportunity to screen libraries of chemical compounds, in an effort to identify and develop novel drug candidates against DENV infections.
PMCID: PMC2962577  PMID: 20973722

Results 1-25 (70)