PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (32)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  An Arrayed Genome-Scale Lentiviral-Enabled Short Hairpin RNA Screen Identifies Lethal and Rescuer Gene Candidates 
Abstract
RNA interference technology is becoming an integral tool for target discovery and validation.; With perhaps the exception of only few studies published using arrayed short hairpin RNA (shRNA) libraries, most of the reports have been either against pooled siRNA or shRNA, or arrayed siRNA libraries. For this purpose, we have developed a workflow and performed an arrayed genome-scale shRNA lethality screen against the TRC1 library in HeLa cells. The resulting targets would be a valuable resource of candidates toward a better understanding of cellular homeostasis. Using a high-stringency hit nomination method encompassing criteria of at least three active hairpins per gene and filtered for potential off-target effects (OTEs), referred to as the Bhinder–Djaballah analysis method, we identified 1,252 lethal and 6 rescuer gene candidates, knockdown of which resulted in severe cell death or enhanced growth, respectively. Cross referencing individual hairpins with the TRC1 validated clone database, 239 of the 1,252 candidates were deemed independently validated with at least three validated clones. Through our systematic OTE analysis, we have identified 31 microRNAs (miRNAs) in lethal and 2 in rescuer genes; all having a seed heptamer mimic in the corresponding shRNA hairpins and likely cause of the OTE observed in our screen, perhaps unraveling a previously unknown plausible essentiality of these miRNAs in cellular viability. Taken together, we report on a methodology for performing large-scale arrayed shRNA screens, a comprehensive analysis method to nominate high-confidence hits, and a performance assessment of the TRC1 library highlighting the intracellular inefficiencies of shRNA processing in general.
doi:10.1089/adt.2012.475
PMCID: PMC3619155  PMID: 23198867
2.  An Arrayed RNA Interference Genome-Wide Screen Identifies Candidate Genes Involved in the MicroRNA 21 Biogenesis Pathway 
Abstract
MicroRNAs (miRNAs) are evolutionary conserved noncoding molecules that regulate gene expression. They influence a number of diverse biological functions, such as development and differentiation. However, their dysregulation has been shown to be associated with disease states, such as cancer. Genes and pathways regulating their biogenesis remain unknown and are highly sought after. For this purpose, we have validated a multiplexed high-content assay strategy to screen for such modulators. Here, we describe its implementation that makes use of a cell-based gain-of-function reporter assay monitoring enhanced green fluorescent protein expression under the control of miRNA 21 (miR-21); combined with measures of both cell metabolic activities through the use of Alamar Blue and cell death through imaged Hoechst-stained nuclei. The strategy was validated using a panel of known genes and enabled us to successfully progress to and complete an arrayed genome-wide short interfering RNA (siRNA) screen against the Ambion Silencer Select v4.0 library containing 64,755 siRNA duplexes covering 21,565 genes. We applied a high-stringency hit analysis method, referred to as the Bhinder–Djaballah analysis method, leading to the nomination of 1,273 genes as candidate inhibitors of the miR-21 biogenesis pathway; after several iterations eliminating those genes with only one active duplex and those enriched in seed sequence mediated off-target effects. Biological classifications revealed four major control junctions among them vesicular transport via clathrin-mediated endocytosis. Altogether, our screen has uncovered a number of novel candidate regulators that are potentially good druggable targets allowing for the discovery and development of small molecules for regulating miRNA function.
doi:10.1089/adt.2012.477
PMCID: PMC3619226  PMID: 23153064
3.  A High Content Assay to Assess Cellular Fitness 
A universal process in experimental biology is the use of engineered cells; more often, stably or transiently transfected cells are generated for the purpose. Therefore, it is important that cell health assessment is conducted to check for stress mediated by induction of heat shock proteins (Hsps). For this purpose, we have developed an integrated platform that would enable a direct assessment of transfection efficiency (TE) combined with cellular toxicity and stress response. We make use of automated microscopy and high content analysis to extract from the same well a multiplexed readout to assess and determine optimal chemical transfection conditions. As a proof of concept, we investigated seven commercial reagents, in a matrix of dose and time, to study transfection of an EGFP DNA plasmid into HeLa cells and their consequences on health and fitness; where we scored for cellular proliferation, EGFP positive cells, and induction of Hsp10 and Hsp70 as makers of stress responses. FuGENE HD emerged as the most optimal reagent with no apparent side effects suitable for performing microtiter based miniaturized transfection for both chemical and RNAi screening. In summary, we report on a high content assay method to assess cellular overall fitness upon chemical transfection.
PMCID: PMC3947212  PMID: 23957721
chemical transfection; HCA; HCS; Hsp10; Hsp70; cell stress; INCA2000; INCA6000
4.  Flaviviruses Are Sensitive to Inhibition of Thymidine Synthesis Pathways 
Journal of Virology  2013;87(17):9411-9419.
Dengue virus has emerged as a global health threat to over one-third of humankind. As a positive-strand RNA virus, dengue virus relies on the host cell metabolism for its translation, replication, and egress. Therefore, a better understanding of the host cell metabolic pathways required for dengue virus infection offers the opportunity to develop new approaches for therapeutic intervention. In a recently described screen of known drugs and bioactive molecules, we observed that methotrexate and floxuridine inhibited dengue virus infections at low micromolar concentrations. Here, we demonstrate that all serotypes of dengue virus, as well as West Nile virus, are highly sensitive to both methotrexate and floxuridine, whereas other RNA viruses (Sindbis virus and vesicular stomatitis virus) are not. Interestingly, flavivirus replication was restored by folinic acid, a thymidine precursor, in the presence of methotrexate and by thymidine in the presence of floxuridine, suggesting an unexpected role for thymidine in flavivirus replication. Since thymidine is not incorporated into RNA genomes, it is likely that increased thymidine production is indirectly involved in flavivirus replication. A possible mechanism is suggested by the finding that p53 inhibition restored dengue virus replication in the presence of floxuridine, consistent with thymidine-less stress triggering p53-mediated antiflavivirus effects in infected cells. Our data reveal thymidine synthesis pathways as new and unexpected therapeutic targets for antiflaviviral drug development.
doi:10.1128/JVI.00101-13
PMCID: PMC3754125  PMID: 23824813
5.  Modulators of the microRNA biogenesis pathway via arrayed lentiviral enabled RNAi screening for drug and biomarker discovery 
MicroRNAs (miRNAs) are small endogenous and conserved non-coding RNA molecules that regulate gene expression. Although the first miRNA was discovered well over sixteen years ago, little is known about their biogenesis and it is only recently that we have begun to understand their scope and diversity. For this purpose, we performed an RNAi screen aimed at identifying genes involved in their biogenesis pathway with a potential use as biomarkers. Using a previously developed miRNA 21 (miR-21) EGFP-based biosensor cell based assay monitoring green fluorescence enhancements, we performed an arrayed short hairpin RNA (shRNA) screen against a lentiviral particle ready TRC1 library covering 16,039 genes in 384-well plate format, and interrogating the genome one gene at a time building a panoramic view of endogenous miRNA activity. Using the BDA method for RNAi data analysis, we nominate 497 gene candidates the knockdown of which increased the EGFP fluorescence and yielding an initial hit rate of 3.09%; of which only 22, with reported validated clones, are deemed high-confidence gene candidates. An unexpected and surprising result was that only DROSHA was identified as a hit out of the seven core essential miRNA biogenesis genes; suggesting that perhaps intracellular shRNA processing into the correct duplex may be cell dependent and with differential outcome. Biological classification revealed several major control junctions among them genes involved in transport and vesicular trafficking. In summary, we report on 22 high confidence gene candidate regulators of miRNA biogenesis with potential use in drug and biomarker discovery.
PMCID: PMC3884689  PMID: 23977983
miRNA; biogenesis; shRNA; H score; BDA method; RNAi; HCS; biomarker; HCA; miRNA 21; DROSHA; biomarker; diagnostics
6.  Systematic analysis of RNAi reports identifies dismal commonality at gene-level & reveals an unprecedented enrichment in pooled shRNA screens 
RNA interference (RNAi) has opened promising avenues to better understand gene function. Though many RNAi screens report on the identification of genes, very few, if any, have been further studied and validated. Data discrepancy is emerging as one of RNAi main pitfalls. We reasoned that a systematic analysis of lethality-based screens, since they score for cell death, would examine the extent of hit discordance at inter-screen level. To this end, we developed a methodology for literature mining and overlap analysis of several screens using both siRNA and shRNA flavors, and obtained 64 gene lists censoring an initial list of 7,430 nominated genes. We further performed a comparative analysis first at a global level followed by hit re-assessment under much more stringent conditions. To our surprise, none of the hits overlapped across the board even for PLK1, which emerged as a strong candidate in siRNA screens; but only marginally in the shRNA ones. Furthermore, EIF5B emerges as the most common hit only in the shRNA screens. A highly unusual and unprecedented result was the observation that 5,269 out of 6,664 nominated genes (~80%) in the shRNA screens were exclusive to the pooled format, raising concerns as to the merits of pooled screens which qualify hits based on relative depletions, possibly due to multiple integrations per cell, data deconvolution or inaccuracies in intracellular processing causing off-target effects. Without golden standards in place, we would encourage the community to pay more attention to RNAi screening data analysis practices, bearing in mind that it is combinatorial in nature and one active siRNA duplex or shRNA hairpin per gene does not suffice credible hit nomination. Finally, we also would like to caution interpretation of pooled shRNA screening outcomes.
PMCID: PMC3885821  PMID: 23848309
RNAi; shRNA; siRNA; Gene; screening; bioinformatics; analysis; overlap; lethality; essential; PLK1
7.  A Novel High-Throughput 1536-well Notch1 γ-Secretase AlphaLISA Assay 
The Notch pathway plays a crucial role in cell fate decisions through controlling various cellular processes. Overactive Notch signal contributes to cancer development from leukemias to solid tumors. γ-Secretase is an intramembrane protease responsible for the final proteolytic step of Notch that releases the membrane-tethered Notch fragment for signaling. Therefore, γ-secretase is an attractive drug target in treating Notch-mediated cancers. However, the absence of high-throughput γ-secretase assay using Notch substrate has limited the identification and development of γ-secretase inhibitors that specifically target the Notch signaling pathway. Here, we report on the development of a 1536-well γ-secretase assay using a biotinylated recombinant Notch1 substrate. We effectively assimilated and miniaturized this newly developed Notch1 substrate with the AlphaLISA detection technology and demonstrated its robustness with a calculated Z’ score of 0.66. We further validated this optimized assay by performing a pilot screening against a chemical library consisting of ~5,600 chemicals and identified known γ-secretase inhibitors e.g. DAPT, and Calpeptin; as well as a novel γ-secretase inhibitor referred to as KD-I-085. This assay is the first reported 1536-well AlphaLISA format and represents a novel high-throughput Notch1-γ-secretase assay, which provides an unprecedented opportunity to discover Notch-selective γ-secretase inhibitors that can be potentially used for the treatment of cancer and other human disorders.
PMCID: PMC3664143  PMID: 23448293
Alzheimer disease; AlphaLISA; cancer; γ-secretase; γ-secretase modulators; Notch signaling
8.  A Class of Allosteric, Caspase Inhibitors Identified by High-Throughput Screening 
Molecular cell  2012;47(4):585-595.
Caspase inhibition is a promising approach for treating multiple diseases. Using a reconstituted assay and high-throughput screening, we identified a group of non-peptide caspase inhibitors. These inhibitors share common chemical scaffolds, suggesting same mechanism of action. They can inhibit apoptosis in various cell types induced by multiple stimuli; they can also inhibit caspase-1-mediated interleukin generation in macrophages, indicating potential anti-inflammatory application. While these compounds inhibit all the tested caspases, kinetic analysis indicates they do not compete for the catalytic sites of the enzymes. The co-crystal structure of one of these compounds with caspase-7 reveals that it binds to the dimerization interface of the caspase, another common structural element shared by all active caspases. Consistently, biochemical analysis demonstrates that the compound abates caspase-8 dimerization. Based on these kinetic, biochemical, and structural analyses, we suggest that these compounds are allosteric caspase inhibitors that function through binding to the dimerization interface of caspases.
doi:10.1016/j.molcel.2012.06.007
PMCID: PMC3428514  PMID: 22795132
9.  Identification of Compounds that Rescue IKBKAP Expression in Familial Dysautonomia-iPS Cells 
Nature biotechnology  2012;30(12):1244-1248.
Patient-specific induced pluripotent stem cells (iPSCs) represent a novel system for modeling human genetic disease and could develop into a key drug discovery platform. We recently reported disease-specific phenotypes in iPSCs from familial dysautonomia (FD) patients. FD is a rare but fatal genetic disorder affecting neural crest lineages. Here we demonstrate the feasibility of performing a primary screen in FD-iPSC derived neural crest precursors. Out of 6,912 compounds tested we characterized 8 hits that rescue expression of IKBKAP, the gene responsible for FD. One of those hits, SKF-86466, is shown to induce IKBKAP transcription via modulation of intracellular cAMP levels and PKA dependent CREB phosphorylation. SKF-86466 also rescues IKAP protein expression and the disease-specific loss of autonomic neuron marker expression. Our data implicate alpha-2 adrenergic receptor activity in regulating IKBKAP expression and demonstrate that small molecule discovery in an iPSC-based disease model can identify candidate drugs for potential therapeutic intervention.
doi:10.1038/nbt.2435
PMCID: PMC3711177  PMID: 23159879
10.  A high density assay format for the detection of novel cytotoxicagents in large chemical libraries 
The Alamar Blue (AB) assay, which incorporates a redox indicator that causes a fluorescence signal enhancement in response to metabolic activity, is commonly used to assess the viability of mammalian cells. In response to the need for homogeneous, inexpensive, high throughput assays for anti-cancer drug screening, a 1536-well microtiter plate based assay which utilizes the AB fluorescent dye as a measure of cellular growth was developed and validated in 10 µL assay volume. The performance and robustness of the miniaturized assay was assessed using a human Mantle Cell Lymphoma (MCL) cell line in a pilot screen against a library of 2,000 known bioactive chemicals; with an overall Z’ value of 0.89 for assay robustness, several known cytotoxic agents were identified including and not limited to anthracyclines, cardiac glycosides, gamboges, and quinones. To further test the sensitivity of the assay, IC50 determinations were performed in both 384-well and 1536-well formats and the obtained results show a very good correlation between the two density formats. These findings demonstrate that this newly developed assay is simple to set up, robust, highly sensitive and inexpensive. The non-radiometric strategy employed in this study should also offer the potential for the rapid screening, without a wash or a lysis step, of well established and primary tumor cell lines against large chemical libraries using the 1536-well microtiter plates.
doi:10.1080/14756360701810082
PMCID: PMC3710589  PMID: 18608772
Assay; miniaturization; Alamar Blue; cytotoxicity; anthracyclines; screening; HTS; fluorescence; resazurin; cell viability; NCEB1; cancer
11.  A simple method for analyzing actives in random RNAi screens: introducing the “H Score” for hit nomination & gene prioritization 
Due to the numerous challenges in hit identification from random RNAi screening, we have examined current practices with a discovery of a variety of methodologies employed and published in many reports; majority of them, unfortunately, do not address the minimum associated criteria for hit nomination, as this could potentially have been the cause or may well be the explanation as to the lack of confirmation and follow up studies, currently facing the RNAi field. Overall, we find that these criteria or parameters are not well defined, in most cases arbitrary in nature, and hence rendering it extremely difficult to judge the quality of and confidence in nominated hits across published studies. For this purpose, we have developed a simple method to score actives independent of assay readout; and provide, for the first time, a homogenous platform enabling cross-comparison of active gene lists resulting from different RNAi screening technologies. Here, we report on our recently developed method dedicated to RNAi data output analysis referred to as the BDA method applicable to both arrayed and pooled RNAi technologies; wherein the concerns pertaining to inconsistent hit nomination and off-target silencing in conjugation with minimal activity criteria to identify a high value target are addressed. In this report, a combined hit rate per gene, called “H score”, is introduced and defined. The H score provides a very useful tool for stringent active gene nomination, gene list comparison across multiple studies, prioritization of hits, and evaluation of the quality of the nominated gene hits.
PMCID: PMC3678258  PMID: 22934950
BDA method; H score; HTS; HCS; RNAi; screening; randomness; Off-target effect; seed sequence; heptamer; miRNA; 3′UTR; siRNA; shRNA; esiRNA
12.  A High-Throughput Scintillation Proximity-Based Assay for Human DNA Ligase IV 
Abstract
Ionizing radiation (IR) and certain chemotherapeutic drugs are designed to generate cytotoxic DNA double-strand breaks (DSBs) in cancer cells. Inhibition of the major DSB repair pathway, nonhomologous end joining (NHEJ), will enhance the cytotoxicity of these agents. Screening for inhibitors of the DNA ligase IV (Lig4), which mediates the final ligation step in NHEJ, offers a novel target-based drug discovery opportunity. For this purpose, we have developed an enzymatic assay to identify chemicals that block the transfer of [α-33P]-AMP from the complex Lig4-[α-33P]-AMP onto the 5′ end of a double-stranded DNA substrate and adapted it to a scintillation proximity assay (SPA). A screen was performed against a collection of 5,280 compounds. Assay statistics show an average Z′ value of 0.73, indicative of a robust assay in this SPA format. Using a threshold of >20% inhibition, 10 compounds were initially scored as positive hits. A follow-up screen confirmed four compounds with IC50 values ranging from 1 to 30 μM. Rabeprazole and U73122 were found to specifically block the adenylate transfer step and DNA rejoining; in whole live cell assays, these compounds were found to inhibit the repair of DSBs generated by IR. The ability to screen and identify Lig4 inhibitors suggests that they may have utility as chemo- and radio-sensitizers in combination therapy and provides a rationale for using this screening strategy to identify additional inhibitors.
doi:10.1089/adt.2011.0404
PMCID: PMC3374410  PMID: 22192310
13.  A High Throughput Scintillation Proximity Imaging Assay for Protein Methyltransferases 
Protein methyltransferases (PMTs) orchestrate epigenetic modifications through post-translational methylation of various protein substrates including histones. Since dysregulation of this process is widely implicated in many cancers, it is of pertinent interest to screen inhibitors of PMTs, as they offer novel target-based opportunities to discover small molecules with potential chemotherapeutic use. We have thus developed an enzymatic screening strategy, which can be adapted to scintillation proximity imaging assay (SPIA) format, to identify these inhibitors. We took advantage of S-adenosyl-L-[3H-methyl]-methionine availability and monitored the enzymatically catalyzed [3H]-methyl addition on lysine residues of biotinylated peptide substrates. The radiolabeled peptides were subsequently captured by streptavidin coated SPA imaging PS beads. We applied this strategy to four PMTs: SET7/9, SET8, SETD2, and EuHMTase1, and optimized assay conditions to achieve Z′ values ranging from 0.48 to 0.91. The robust performance of this SPIA for the four PMTs was validated in a pilot screen of approximately 7,000 compounds. We identified 80 cumulative hits across the four targets. NF279, a suramin analogue found to specifically inhibit SET7/9 and SETD2 with IC50 values of 1.9 and 1.1 μM, respectively. Another identified compound, Merbromin, a topical antiseptic, was classified as a pan-active inhibitor of the four PMTs. These findings demonstrate that our proposed SPIA strategy is generic for multiple PMTs and can be successfully implemented to identify novel and specific inhibitors of PMTs. The specific PMT inhibitors may constitute a new class of anti-proliferative agents for potential therapeutic use.
PMCID: PMC3553658  PMID: 22256970
protein methyl transferases; drug discovery; inhibit or; SET7/9; SET8; SETD2; EuHMTase1; SPA technology; red shifted imaging beads
14.  Structure-activity relationships of 6-(2,6-dichlorophenyl)-8-methyl-2-(phenylamino)pyrido[2,3-d]pyrimidin-7-ones: toward selective Abl inhibitors 
We report the design, synthesis and structure-activity relationship (SAR) of a series of novel pyrido[2,3-d]pyrimidin-7-one compounds as potent Abl kinase inhibitors. We evaluate their specificity profile against a panel of human recombinant kinases, as well as their biological profile toward a panel of well characterized cancer cell lines. Our study reveals that substitutions in the -3 and -4 positions of the phenylamino moiety lead to improved potency and improved selectivity both in target-based and cell based assays. Altogether, our results provide an insight into the SAR of pyrido[2,3-d]pyrimidin-7-ones for the development of drug candidates with improved potency and selectivity for the targeted treatment of CML.
doi:10.1016/j.bmcl.2009.10.085
PMCID: PMC3629380  PMID: 19889540
Pyridopyrimidines; CML; Abl kinase; inhibitor
15.  Development and Validation of a High-density Fluorescence Polarization-based Assay for the Trypanosoma RNA Triphosphatase TbCet1 
RNA triphosphatases are attractive and mostly unexplored therapeutic targets for the development of broad spectrum antiprotozoal, antiviral and antifungal agents. The use of malachite green as a readout for phosphatases is well characterized and widely employed. However, the reaction depends on high quantities of inorganic phosphate to be generated, which makes this assay not easily amenable to screening in 1536-well format. The overly long reading times required also prohibit its use to screen large chemical libraries. To overcome these limitations, we sought to develop a fluorescence polarization (FP) -based assay for triphosphatases, compatible with miniaturization and fast readouts. For this purpose, we took advantage of the nucleoside triphosphatase activity of this class of enzyme to successfully adapt the Transcreener™ ADP assay based on the detection of generated ADP by immunocompetition fluorescence polarization to the RNA triphosphatase TbCet1 in 1536-well format. We also tested the performance of this newly developed assay in a pilot screen of 3,000 compounds and we confirmed the activity of the obtained hits. We present and discuss our findings and their importance for the discovery of novel drugs by high-throughput screening.
PMCID: PMC3626118  PMID: 19275531
triphosphatase; drug discovery; high-throughput screening; fluorescence polarization
16.  Designs and Concept-Reliance of a Fully Automated High Content Screening Platform 
Journal of laboratory automation  2012;17(5):359-369.
High content screening (HCS) is becoming an accepted platform in academic and industry screening labs and does require slightly different logistics for execution. To automate our stand alone HCS microscopes, namely an alpha IN Cell Analyzer 3000 (INCA3000) originally a Praelux unit hooked to a Hudson Plate Crane with a maximum capacity of 50 plates per run; and the IN Cell Analyzer 2000 (INCA2000) where up to 320 plates could be fed per run using the Thermo Fisher Scientific Orbitor, we opted for a 4 meter linear track system harboring both microscopes, plate washer, bulk dispensers, and a high capacity incubator allowing us to perform both live and fixed cell based assays while accessing both microscopes on deck. Considerations in design were given to the integration of the alpha INCA3000, a new gripper concept to access the onboard nest, and peripheral locations on deck to ensure a self reliant system capable of achieving higher throughput. The resulting system, referred to as Hestia, has been fully operational since the New Year, has an onboard capacity of 504 plates, and harbors the only fully automated alpha INCA3000 unit in the World.
doi:10.1177/2211068212453311
PMCID: PMC3626108  PMID: 22797489
HCS; HTS; automation; IN Cell Analyzer 3000; IN Cell Analyzer 2000
17.  Revisiting Old Drugs as Novel Agents for Retinoblastoma: In vitro and In vivo Antitumor Activity of Cardenolides 
PURPOSE
Intraarterial delivery of chemotherapeutic agents offers a new and exciting opportunity for the treatment of advanced intraocular retinoblastoma. It allows local delivery of relatively high doses of chemo agents while bypassing general blood circulation. For this reason we sought to revisit some of the FDA approved drugs for the treatment of retinoblastoma.
METHODS
High throughput screening (HTS) of 2,640 approved drugs and bioactive compounds resulted in the identification of cytotoxic agents with potent activity toward both the Y79 and RB355 human retinoblastoma cell lines. Subsequent profiling of the drug candidates was performed in a panel of ocular cancer cell lines. Induction of apoptosis in Y79 cells was assessed by immunofluorescence detection of activated Caspase-3. Therapeutic effect was evaluated in a xenograft model of retinoblastoma.
RESULTS
We have identified several FDA approved drugs with potent cytotoxic activity toward retinoblastoma cell lines in vitro. Among them were several cardiac glycosides, a class of cardenolides historically associated with the prevention and treatment of congestive heart failure. Caspase-3 activation studies provided an insight into the mechanism of action of cardenolides in retinoblastoma cells. When tested in a xenograft model of retinoblastoma, the cardenolide ouabain induced complete tumor regression in the treated mice.
CONCLUSIONS
We have identified cardenolides as a new class of antitumor agents for the treatment of retinoblastoma. We propose that members of this class of cardiotonic drugs could be repositioned for retinoblastoma if administered locally via direct intraarterial infusion.
doi:10.1167/iovs.08-3158
PMCID: PMC3617409  PMID: 19151399
18.  A High-Content Biosensor Based Screen Identifies Cell Permeable Activators and Inhibitors of EGFR Function: Implications in Drug Discovery 
Journal of biomolecular screening  2012;17(7):885-899.
Early success of kinase inhibitors has validated their use as drugs. However, discovery efforts have also suffered from high attrition rates; due to lack of cellular activity. We reasoned that screening for such candidates in live cells would identify novel cell permeable modulators for development. For this purpose, we have used our recently optimized EGFR biosensor (EGFRB) assay to screen for modulators of EGFR activity. Here, we report on its validation under HTS conditions displaying a S/N ratio of 21 and a Z’ value of 0.56; attributes of a robust cell based assay. We performed a pilot screen against a library of 6,912 compounds demonstrating good reproducibility and identifying 82 inhibitors and 66 activators with initial hit rates of 1.2% and 0.95 %, respectively. Follow up dose response studies revealed that 12 out of the 13 known EGFR inhibitors in the library confirmed as hits. ZM-306416, a VEGFR antagonist, was identified as a potent inhibitor of EGFR function. Flurandrenolide, beclomethasone and ebastine were confirmed as activators of EGFR function. Taken together, our results validate this novel approach and demonstrate its utility in the discovery of novel kinase modulators with potential use in the clinic.
doi:10.1177/1087057112446174
PMCID: PMC3615554  PMID: 22573732
EGFR; domain-based biosensor; high content analysis; live cell imaging
19.  Live Cell Imaging of Caspase Activation for High Content Screening 
Journal of biomolecular screening  2009;14(8):956-969.
Caspases are central to the execution of programmed cell death and their activation constitutes the biochemical hallmark of apoptosis. In this article, we report the successful adaptation of a high content assay method utilizing the DEVD-NucView488™ fluorogenic substrate, and for the first time, we show caspase activation in live cells induced either by drugs or siRNA. The fluorogenic substrate was found to be non-toxic over an exposure period of several days; during which we demonstrate automated imaging and quantification of caspase activation of the same cell population as a function of time. Overexpression of the anti-apoptotic protein Bcl-XL, alone or in combination with the inhibitor Z-VAD-FMK, attenuated caspase activation in HeLa cells exposed to Doxorubicin, Etoposide or cell death siRNA. Our method was further validated against two well characterized NSCLC cell lines reported to be sensitive (H3255) or refractory (H2030) to Erlotinib; where we show a differential time dependent activation was observed for H3255 and no significant changes in H2030, consistent with their respective chemosensitivity profile. In summary, our results demonstrate the feasibility of using this newly adapted and validated high content assay to screen chemical or RNAi libraries for the identification of previously uncovered enhancers and suppressors of the apoptotic machinery in live cells.
doi:10.1177/1087057109343207
PMCID: PMC3613133  PMID: 19726787
High content assay; RNAi HT screening; Chemical HT screening; caspase; apoptosis; cancer; live cells
20.  A Synergetic Screening Approach with Companion Effector for Combination Therapy: Application to Retinoblastoma 
PLoS ONE  2013;8(3):e59156.
For many cancers, the lack of potency and the toxicity of current drugs limits the dose achievable in patients and the efficacy of treatment. Among them, retinoblastoma is a rare cancer of the eye for which better chemotherapeutic options are needed. Combination therapy is a compelling approach to enhance the efficacy of current treatment, however clinical trials to test rationally designed combinations of approved drugs are slow and expensive, and limited by our lack of in-depth knowledge of drug specificity. Since many patients already turn to nutraceuticals in hopes of improving their condition, we hypothesized that certain approved drugs could potentially synergize with widely consumed supplements. Following this hypothesis, we devised an alternative screening strategy aimed at taking advantage of a bait compound such as a nutraceutical with potential therapeutic benefits but low potency, by screening chemical libraries for approved drugs that synergize with this companion effector. As a proof of concept, we sought to identify approved drugs with synergetic therapeutic effects toward retinoblastoma cells in combination with the antioxidant resveratrol, popular as a supplement. We systematically tested FDA-approved drugs and known bioactives seeking to identify such pairs, which led to uncovering only a few additive combinations; but to our surprise, we identified a class of anticancer drugs widely used in the clinic whose therapeutic effect is antagonized with resveratrol. Our observations could explain in part why some patients do not respond well to treatment. Our results validate this alternative approach, and we expect that our companion effector strategy could significantly impact both drug discovery and the nutraceutical industry.
doi:10.1371/journal.pone.0059156
PMCID: PMC3602587  PMID: 23527118
21.  Domain-Based Biosensor Assay to Screen for Epidermal Growth Factor Receptor Modulators in Live Cells 
Abstract
Traditional drug discovery efforts have resulted in the approval of a handful of receptor tyrosine kinase (RTK) inhibitors; however, their discovery relied solely on screening recombinant kinases, often with poor cellular activity outcome. The ability to screen RTKs in their natural environment is sought as an alternative approach. We have adapted a novel strategy utilizing a green fluorescent protein–labeled SRC homology 2 domain–based biosensor as a surrogate reporter of endogenous epidermal growth factor receptor (EGFR) activity in A549 cells. Upon activation of the receptor, EGFR function in live cells is measured by the number of green granules that form. Here we describe assay miniaturization and demonstrate specificity for EGFR through its chemical inhibition and RNAi-dependent knockdown resulting in complete abrogation of granule formation. Gefitinib and PD 153035 were identified as hits in a pilot screen. This approach allows for the identification of novel EGFR modulators in high-throughput formats for screening chemical and RNAi libraries.
doi:10.1089/adt.2011.423
PMCID: PMC3277729  PMID: 22280060
22.  Identification of benzofuran-4,5-diones as novel and selective non-hydroxamic acid, non-peptidomimetic based inhibitors of human peptide deformylase 
Selective inhibitors of human peptide deformylase (HsPDF) are predicted to constitute a new class of antitumor agents. We report the identification of benzofuran-4,5-diones as the first known selective HsPDF inhibitors and we describe their selectivity profile in a panel of metalloproteases. We characterize their struture activity relationships for antitumor activity in a panel of cancer cell lines, and we assess their in vivo efficacy in a mouse xenograft model. Our results demonstrate that selective HsPDF inhibitors based on the benzofuran-4,5-dione scaffold constitute a novel class of antitumor agents that are potent in vitro and in vivo.
doi:10.1016/j.bmcl.2011.05.129
PMCID: PMC3139024  PMID: 21719286
Human peptide deformylase; Benzofuran-4,5-diones; Structure activity relationships; Fluorescence polarization; Antiproliferative agents
23.  Validation of a High-Content Screening Assay Using Whole-Well Imaging of Transformed Phenotypes 
Abstract
Automated microscopy was introduced two decades ago and has become an integral part of the discovery process as a high-content screening platform with noticeable challenges in executing cell-based assays. It would be of interest to use it to screen for reversers of a transformed cell phenotype. In this report, we present data obtained from an optimized assay that identifies compounds that reverse a transformed phenotype induced in NIH-3T3 cells by expressing a novel oncogene, KP, resulting from fusion between platelet derived growth factor receptor alpha (PDGFRα) and kinase insert domain receptor (KDR), that was identified in human glioblastoma. Initial image acquisitions using multiple tiles per well were found to be insufficient as to accurately image and quantify the clusters; whole-well imaging, performed on the IN Cell Analyzer 2000, while still two-dimensional imaging, was found to accurately image and quantify clusters, due largely to the inherent variability of their size and well location. The resulting assay exhibited a Z′ value of 0.79 and a signal-to-noise ratio of 15, and it was validated against known effectors and shown to identify only PDGFRα inhibitors, and then tested in a pilot screen against a library of 58 known inhibitors identifying mostly PDGFRα inhibitors as reversers of the KP induced transformed phenotype. In conclusion, our optimized and validated assay using whole-well imaging is robust and sensitive in identifying compounds that reverse the transformed phenotype induced by KP with a broader applicability to other cell-based assays that are challenging in HTS against chemical and RNAi libraries.
doi:10.1089/adt.2010.0342
PMCID: PMC3123874  PMID: 21182456
24.  High-Content Assay to Identify Inhibitors of Dengue Virus Infection 
Abstract
Dengue virus (DENV) infections are vectored by mosquitoes and constitute one of the most prevalent infectious diseases in many parts of the world, affecting millions of people annually. Current treatments for DENV infections are nonspecific and largely ineffective. In this study, we describe the adaptation of a high-content cell-based assay for screening against DENV-infected cells to identify inhibitors and modulators of DENV infection. Using this high-content approach, we monitored the inhibition of test compounds on DENV protein production by means of immunofluorescence staining of DENV glycoprotein envelope, simultaneously evaluating cytotoxicity in HEK293 cells. The adapted 384-well microtiter-based assay was validated using a small panel of compounds previously reported as having inhibitory activity against DENV infections of cell cultures, including compounds with antiviral activity (ribavirin), inhibitors of cellular signaling pathways (U0126), and polysaccharides that are presumed to interfere with virus attachment (carrageenan). A screen was performed against a collection of 5,632 well-characterized bioactives, including U.S. Food and Drug Administration–approved drugs. Assay control statistics show an average Z' of 0.63, indicative of a robust assay in this cell-based format. Using a threshold of >80% DENV inhibition with <20% cellular cytotoxicity, 79 compounds were initially scored as positive hits. A follow-up screen confirmed 73 compounds with IC50 potencies ranging from 60 nM to 9 μM and yielding a hit rate of 1.3%. Over half of the confirmed hits are known to target transporters, receptors, and protein kinases, providing potential opportunity for drug repurposing to treat DENV infections. In summary, this assay offers the opportunity to screen libraries of chemical compounds, in an effort to identify and develop novel drug candidates against DENV infections.
doi:10.1089/adt.2010.0321
PMCID: PMC2962577  PMID: 20973722
25.  A High-Throughput Screen for Alpha Particle Radiation Protectants 
Abstract
Alpha-particle-emitting elements are of increasing importance as environmental and occupational carcinogens, toxic components of radiation dispersal devices and accidents, and potent therapeutics in oncology. Alpha particle radiation differs from radiations of lower linear energy transfer in that it predominantly damages DNA via direct action. Because of this, radical scavengers effective for other radiations have had only limited effect in mitigating alpha particle toxicity. We describe here a simple assay and a pilot screen of 3,119 compounds in a high-throughput screen (HTS), using the alpha-particle-emitting isotope, 225Ac, for the discovery of compounds that might protect mammalian cells from alpha particles through novel mechanisms. The assay, which monitored the viability of a myeloid leukemic cell line upon alpha particle exposure, was robust and reproducible, yielding a Z' factor of 0.66 and a signal-to-noise ratio of nearly 10 to 1. Surprisingly, 1 compound emerged from this screen, epoxy-4,5-α-dihydroxysantonin (EDHS), that showed considerable protective activity. While the value of EDHS remains to be determined, its discovery is a proof of concept and validation of the utility of this HTS methodology. Further application of the described assay could yield compounds useful in minimizing the toxicity and carcinogenesis associated with alpha particle exposure.
doi:10.1089/adt.2010.0291
PMCID: PMC2978061  PMID: 20658946

Results 1-25 (32)