Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Identifying Recent Adaptations in Large-scale Genomic Data 
Cell  2013;152(4):703-713.
While several hundred regions of the human genome harbor signals of positive natural selection, few of the relevant adaptive traits and variants have been elucidated. Using full-genome sequence variation from the 1000 Genomes Project (1000G) and the Composite of Multiple Signals (CMS) test, we investigated 412 candidate signals and leveraged functional annotation, protein structure modeling, epigenetics, and association studies to identify and extensively annotate candidate causal variants. The resulting catalog provides a tractable list for experimental follow-up; it includes thirty-five high-scoring non-synonymous variants, fifty-nine variants associated with expression levels of a nearby coding gene or lincRNA, and numerous variants associated with susceptibility to infectious disease and other phenotypes. We experimentally characterized one candidate non-synonymous variant in TLR5, and show that it leads to altered NF-κB signaling in response to bacterial flagellin.
PMCID: PMC3674781  PMID: 23415221
2.  Identification and Functional Validation of the Novel Antimalarial Resistance Locus PF10_0355 in Plasmodium falciparum 
PLoS Genetics  2011;7(4):e1001383.
The Plasmodium falciparum parasite's ability to adapt to environmental pressures, such as the human immune system and antimalarial drugs, makes malaria an enduring burden to public health. Understanding the genetic basis of these adaptations is critical to intervening successfully against malaria. To that end, we created a high-density genotyping array that assays over 17,000 single nucleotide polymorphisms (∼1 SNP/kb), and applied it to 57 culture-adapted parasites from three continents. We characterized genome-wide genetic diversity within and between populations and identified numerous loci with signals of natural selection, suggesting their role in recent adaptation. In addition, we performed a genome-wide association study (GWAS), searching for loci correlated with resistance to thirteen antimalarials; we detected both known and novel resistance loci, including a new halofantrine resistance locus, PF10_0355. Through functional testing we demonstrated that PF10_0355 overexpression decreases sensitivity to halofantrine, mefloquine, and lumefantrine, but not to structurally unrelated antimalarials, and that increased gene copy number mediates resistance. Our GWAS and follow-on functional validation demonstrate the potential of genome-wide studies to elucidate functionally important loci in the malaria parasite genome.
Author Summary
Malaria infection with the human pathogen Plasmodium falciparum results in almost a million deaths each year, mostly in African children. Efforts to eliminate malaria are underway, but the parasite is adept at eluding both the human immune response and antimalarial treatments. Thus, it is important to understand how the parasite becomes resistant to drugs and to develop strategies to overcome resistance mechanisms. Toward this end, we used population genetic strategies to identify genetic loci that contribute to parasite adaptation and to identify candidate genes involved in drug resistance. We examined over 17,000 genetic variants across the parasite genome in over 50 strains in which we also measured responses to many known antimalarial compounds. We found a number of genetic loci showing signs of recent natural selection and a number of loci potentially involved in modulating the parasite's response to drugs. We further demonstrated that one of the novel candidate genes (PF10_0355) modulates resistance to the antimalarial compounds halofantrine, mefloquine, and lumefantrine. Overall, this study confirms that we can use genome-wide approaches to identify clinically relevant genes and demonstrates through functional testing that at least one of these candidate genes is indeed involved in antimalarial drug resistance.
PMCID: PMC3080868  PMID: 21533027
4.  ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads 
Genome Biology  2009;10(10):R103.
Allpaths2, a method for accurately assembling small genomes with high continuity using short paired reads.
We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).
PMCID: PMC2784318  PMID: 19796385

Results 1-4 (4)