PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance 
Nature genetics  2016;48(5):544-551.
A more complete understanding of the genetic basis of drug resistance in Mycobacterium tuberculosis is critical for prompt diagnosis and optimal treatment, particularly for toxic second-line drugs like D-cycloserine. Here, we used whole-genome sequences from 498 strains of M. tuberculosis to identify novel resistance-conferring genotypes. By combining association and correlated evolution tests with strategies for amplifying signal from rare variants, we found that loss-of-function mutations in ald (Rv2780), encoding L-alanine dehydrogenase, were associated with unexplained drug resistance. Convergent evolution of this loss-of-function was observed exclusively among multidrug-resistant strains. Drug susceptibility testing established that ald loss-of-function conferred resistance to D-cycloserine, and susceptibility to the drug was partially restored by complementation of ald. Clinical strains with mutations in ald and alr exhibited increased resistance to D-cycloserine when cultured in vitro. Incorporation of D-cycloserine resistance in novel molecular diagnostics could allow for targeted utilization of this toxic drug among patients with susceptible infections.
doi:10.1038/ng.3548
PMCID: PMC4848111  PMID: 27064254
2.  Evolution of Extensively Drug-Resistant Tuberculosis over Four Decades: Whole Genome Sequencing and Dating Analysis of Mycobacterium tuberculosis Isolates from KwaZulu-Natal 
PLoS Medicine  2015;12(9):e1001880.
Background
The continued advance of antibiotic resistance threatens the treatment and control of many infectious diseases. This is exemplified by the largest global outbreak of extensively drug-resistant (XDR) tuberculosis (TB) identified in Tugela Ferry, KwaZulu-Natal, South Africa, in 2005 that continues today. It is unclear whether the emergence of XDR-TB in KwaZulu-Natal was due to recent inadequacies in TB control in conjunction with HIV or other factors. Understanding the origins of drug resistance in this fatal outbreak of XDR will inform the control and prevention of drug-resistant TB in other settings. In this study, we used whole genome sequencing and dating analysis to determine if XDR-TB had emerged recently or had ancient antecedents.
Methods and Findings
We performed whole genome sequencing and drug susceptibility testing on 337 clinical isolates of Mycobacterium tuberculosis collected in KwaZulu-Natal from 2008 to 2013, in addition to three historical isolates, collected from patients in the same province and including an isolate from the 2005 Tugela Ferry XDR outbreak, a multidrug-resistant (MDR) isolate from 1994, and a pansusceptible isolate from 1995. We utilized an array of whole genome comparative techniques to assess the relatedness among strains, to establish the order of acquisition of drug resistance mutations, including the timing of acquisitions leading to XDR-TB in the LAM4 spoligotype, and to calculate the number of independent evolutionary emergences of MDR and XDR. Our sequencing and analysis revealed a 50-member clone of XDR M. tuberculosis that was highly related to the Tugela Ferry XDR outbreak strain. We estimated that mutations conferring isoniazid and streptomycin resistance in this clone were acquired 50 y prior to the Tugela Ferry outbreak (katG S315T [isoniazid]; gidB 130 bp deletion [streptomycin]; 1957 [95% highest posterior density (HPD): 1937–1971]), with the subsequent emergence of MDR and XDR occurring 20 y (rpoB L452P [rifampicin]; pncA 1 bp insertion [pyrazinamide]; 1984 [95% HPD: 1974–1992]) and 10 y (rpoB D435G [rifampicin]; rrs 1400 [kanamycin]; gyrA A90V [ofloxacin]; 1995 [95% HPD: 1988–1999]) prior to the outbreak, respectively. We observed frequent de novo evolution of MDR and XDR, with 56 and nine independent evolutionary events, respectively. Isoniazid resistance evolved before rifampicin resistance 46 times, whereas rifampicin resistance evolved prior to isoniazid only twice. We identified additional putative compensatory mutations to rifampicin in this dataset. One major limitation of this study is that the conclusions with respect to ordering and timing of acquisition of mutations may not represent universal patterns of drug resistance emergence in other areas of the globe.
Conclusions
In the first whole genome-based analysis of the emergence of drug resistance among clinical isolates of M. tuberculosis, we show that the ancestral precursor of the LAM4 XDR outbreak strain in Tugela Ferry gained mutations to first-line drugs at the beginning of the antibiotic era. Subsequent accumulation of stepwise resistance mutations, occurring over decades and prior to the explosion of HIV in this region, yielded MDR and XDR, permitting the emergence of compensatory mutations. Our results suggest that drug-resistant strains circulating today reflect not only vulnerabilities of current TB control efforts but also those that date back 50 y. In drug-resistant TB, isoniazid resistance was overwhelmingly the initial resistance mutation to be acquired, which would not be detected by current rapid molecular diagnostics employed in South Africa that assess only rifampicin resistance.
Editors' Summary
Background
Tuberculosis (TB)—a contagious bacterial disease that usually infects the lungs—is a global public health problem. Every year, about 9 million people develop active TB disease, and 1.5 million people die from the disease. Mycobacterium tuberculosis, the organism that causes TB, is spread in airborne droplets when people with TB cough. The symptoms of TB include cough, weight loss, and fever. Diagnostic tests for the disease include sputum smear microscopy (microscopic analysis of mucus coughed up from the lungs) and chest X-rays. TB can be cured by taking a regimen of multiple antibiotics daily for 6 mo. However, the emergence of multidrug-resistant tuberculosis (MDR-TB, TB with resistance to both isoniazid and rifampicin) and extensively drug-resistant tuberculosis (XDR-TB, MDR-TB with additional resistance to both quinolones and second-line injectable agents), together with the spread of HIV (which increases susceptibility to TB), is now threatening TB control efforts. MDR-TB is caused by M. tuberculosis strains that have acquired mutations (genetic changes) that make them resistant to isoniazid, rifampicin, and sometimes other anti-TB drugs; XDR-TB is caused by bacteria that are resistant to isoniazid, rifampicin, one or more fluoroquinolones (for example, ofloxacin), and at least one injectable second-line drug (for example, kanamycin).
Why Was This Study Done?
A better understanding of the origins of drug-resistant TB is essential for effective control of TB. Public health experts need to know whether the emergence of drug-resistant TB is caused by inadequacies in TB control or related to other factors such as the spread of HIV and whether new resistant strains of M. tuberculosis repeatedly emerge during XDR-TB outbreaks or whether the transmission of a single drug-resistant strain drives these outbreaks. Here, the researchers use whole genome sequencing and dating analysis to investigate the origin and evolution of an XDR-TB outbreak identified in 2005 in Tugela Ferry, KwaZulu-Natal, South Africa. The predominant strain of XDR M. tuberculosis isolated during this large XDR-TB outbreak belongs to a subfamily called LAM4. Since the outbreak began, XDR-TB has also been reported in hospitals across KwaZulu-Natal, and some of these outbreaks have been caused by bacterial strains not falling within the LAM4 spoligotype (“spoligotyping” characterizes M. tuberculosis strains based on the presence of unique DNA sequences in a specific region of the bacterial genome).
What Did the Researchers Do and Find?
The researchers tested the antibiotic susceptibility of 337 clinical isolates of M. tuberculosis collected in KwaZulu-Natal between 2008 and 2013 and of three historical isolates—two collected in the province in the mid-1990s and a third from the Tugela Ferry XDR outbreak. They sequenced the whole genome of these isolates and used comparative techniques to assess the isolates’ relatedness and to investigate the acquisition of drug resistance. This analysis revealed a 50-member clone of XDR bacteria among the isolates collected across KwaZulu-Natal that was highly related to the LAM4 strain (a clone is defined here as a set of strains in which each member differs by no more than ten single nucleotide polymorphisms [SNPs] from at least one other member; an SNP is a type of genetic variant). Mutations that conferred isoniazid resistance in this clone were acquired in about 1957; MDR and XDR strains emerged in about 1984 and 1995, respectively. The analysis also indicates that MDR and XDR evolved de novo 56 times and nine times, respectively, and that isoniazid resistance nearly always evolved before rifampicin resistance.
What Do These Findings Mean?
These findings provide new information about the ordering and timing of the acquisition of drug-resistance mutations by M. tuberculosis in KwaZulu-Natal but do not necessarily represent the evolution of XDR-TB in other settings. Most notably, these findings indicate that the ancestral precursor of the Tugela Ferry XDR outbreak strain gained resistance to first-line antibiotics shortly after these antibiotics became available for clinical use. Subsequent stepwise accumulation of additional resistance mutations that occurred over decades led to the emergence of MDR and XDR strains. Importantly, the emergence of these strains occurred before the explosion of HIV in KwaZulu-Natal. Thus, these findings highlight the dire repercussions of the failure of historic attempts to control resistance to first-line anti-TB drugs and draw attention to the need for new anti-TB drugs to be used prudently to prevent early fixation of resistance and to protect the useful lifespan of these agents. Finally, the finding that isoniazid resistance is a key initiation event for progression to MDR and XDR suggests that TB control programs should test routinely for both isoniazid and rifampicin resistance to ensure early detection of drug-resistant TB.
Additional Information
This list of resources contains links that can be accessed when viewing the PDF on a device or via the online version of the article at http://dx.doi.org/10.1371/journal.pmed.1001880.
The World Health Organization (WHO) provides information (in several languages) on TB and on MDR-TB; the Global Tuberculosis Report 2014 provides information about TB around the world; a supplement to the report entitled “Drug-Resistant TB—Surveillance and Response” is available
The Stop TB Partnership is working towards TB elimination and provides personal stories about TB (in English and Spanish)
The United States Centers for Disease Control and Prevention provides information about TB and about drug-resistant TB (in English and Spanish)
The US National Institute of Allergy and Infectious Diseases also has detailed information on TB, including a drug-resistant TB visual tour
TB & Me, a collaborative blogging project run by patients being treated for MDR-TB and Mèdecins sans Frontiéres, provides more patient stories
The not-for-profit organization Global Health Education provides information about TB in South Africa
MedlinePlus has links to further information about TB (in English and Spanish)
doi:10.1371/journal.pmed.1001880
PMCID: PMC4587932  PMID: 26418737
3.  Whole Genome Deep Sequencing of HIV-1 Reveals the Impact of Early Minor Variants Upon Immune Recognition During Acute Infection 
PLoS Pathogens  2012;8(3):e1002529.
Deep sequencing technologies have the potential to transform the study of highly variable viral pathogens by providing a rapid and cost-effective approach to sensitively characterize rapidly evolving viral quasispecies. Here, we report on a high-throughput whole HIV-1 genome deep sequencing platform that combines 454 pyrosequencing with novel assembly and variant detection algorithms. In one subject we combined these genetic data with detailed immunological analyses to comprehensively evaluate viral evolution and immune escape during the acute phase of HIV-1 infection. The majority of early, low frequency mutations represented viral adaptation to host CD8+ T cell responses, evidence of strong immune selection pressure occurring during the early decline from peak viremia. CD8+ T cell responses capable of recognizing these low frequency escape variants coincided with the selection and evolution of more effective secondary HLA-anchor escape mutations. Frequent, and in some cases rapid, reversion of transmitted mutations was also observed across the viral genome. When located within restricted CD8 epitopes these low frequency reverting mutations were sufficient to prime de novo responses to these epitopes, again illustrating the capacity of the immune response to recognize and respond to low frequency variants. More importantly, rapid viral escape from the most immunodominant CD8+ T cell responses coincided with plateauing of the initial viral load decline in this subject, suggestive of a potential link between maintenance of effective, dominant CD8 responses and the degree of early viremia reduction. We conclude that the early control of HIV-1 replication by immunodominant CD8+ T cell responses may be substantially influenced by rapid, low frequency viral adaptations not detected by conventional sequencing approaches, which warrants further investigation. These data support the critical need for vaccine-induced CD8+ T cell responses to target more highly constrained regions of the virus in order to ensure the maintenance of immunodominant CD8 responses and the sustained decline of early viremia.
Author Summary
The ability of HIV-1 and other highly variable pathogens to rapidly mutate to escape vaccine-induced immune responses represents a major hurdle to the development of effective vaccines to these highly persistent pathogens. Application of next-generation or deep sequencing technologies to the study of host pathogens could significantly improve our understanding of the mechanisms by which these pathogens subvert host immunity, and aid in the development of novel vaccines and therapeutics. Here, we developed a 454 deep sequencing approach to enable the sensitive detection of low-frequency viral variants across the entire HIV-1 genome. When applied to the acute phase of HIV-1 infection we observed that the majority of early, low frequency mutations represented viral adaptations to host cellular immune responses, evidence of strong host immunity developing during the early decline of peak viral load. Rapid viral escape from the most dominant immune responses however correlated with loss of this initial viral control, suggestive of the importance of mounting immune responses against more conserved regions of the virus. These data provide a greater understanding of the early evolutionary events subverting the ability of host immune responses to control early HIV-1 replication, yielding important insight into the design of more effective vaccine strategies.
doi:10.1371/journal.ppat.1002529
PMCID: PMC3297584  PMID: 22412369
4.  ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads 
Genome Biology  2009;10(10):R103.
Allpaths2, a method for accurately assembling small genomes with high continuity using short paired reads.
We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).
doi:10.1186/gb-2009-10-10-r103
PMCID: PMC2784318  PMID: 19796385

Results 1-4 (4)