PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Multidrug-Resistant Acinetobacter baumannii in Veterinary Clinics, Germany 
Emerging Infectious Diseases  2011;17(9):1751-1754.
An increase in prevalence of multidrug-resistant Acinetobacter spp. in hospitalized animals was observed at the Justus-Liebig-University (Germany). Genotypic analysis of 56 isolates during 2000–2008 showed 3 clusters that corresponded to European clones I–III. Results indicate spread of genotypically related strains within and among veterinary clinics in Germany.
doi:10.3201/eid1709.101931
PMCID: PMC3322069  PMID: 21888812
zoonoses; Acinetobacter baumannii; animals; veterinary clinics; antimicrobial susceptibility; antimicrobial resistance; DNA fingerprinting; amplified fragment length polymorphism; pulsed-field gel electrophoresis; PFGE; clones; Germany; dispatch
2.  Diversity and Clinical Impact of Acinetobacter baumannii Colonization and Infection at a Military Medical Center ▿  
Journal of Clinical Microbiology  2010;49(1):159-166.
The epidemiology of Acinetobacter baumannii emerging in combat casualties is poorly understood. We analyzed 65 (54 nonreplicate) Acinetobacter isolates from 48 patients (46 hospitalized and 2 outpatient trainees entering the military) from October 2004 to October 2005 for genotypic similarities, time-space relatedness, and antibiotic susceptibility. Clinical and surveillance cultures were compared by amplified fragment length polymorphism (AFLP) genomic fingerprinting to each other and to strains of a reference database. Antibiotic susceptibility was determined, and multiplex PCR was performed for OXA-23-like, -24-like, -51-like, and -58-like carbapenemases. Records were reviewed for overlapping hospital stays of the most frequent genotypes, and risk ratios were calculated for any association of genotype with severity of Acute Physiology and Chronic Health Evaluation II (APACHE II) score or injury severity score (ISS) and previous antibiotic use. Nineteen genotypes were identified; two predominated, one consistent with an emerging novel international clone and the other unique to our database. Both predominant genotypes were carbapenem resistant, were present at another hospital before patients' admission to our facility, and were associated with higher APACHE II scores, higher ISSs, and previous carbapenem antibiotics in comparison with other genotypes. One predominated in wound and respiratory isolates, and the other predominated in wound and skin surveillance samples. Several other genotypes were identified as European clones I to III. Acinetobacter genotypes from recruits upon entry to the military, unlike those in hospitalized patients, did not include carbapenem-resistant genotypes. Acinetobacter species isolated from battlefield casualties are diverse, including genotypes belonging to European clones I to III. Two carbapenem-resistant genotypes were epidemic, one of which appeared to belong to a novel international clone.
doi:10.1128/JCM.00766-10
PMCID: PMC3020478  PMID: 21084513
3.  Horizontal Gene Transfer in a Polyclonal Outbreak of Carbapenem-Resistant Acinetobacter baumannii▿  
Journal of Clinical Microbiology  2006;45(2):453-460.
In the last few years, phenotypically carbapenem resistant Acinetobacter strains have been identified throughout the world, including in many of the hospitals and intensive care units (ICUs) of Australia. Genotyping of Australian ICU outbreak-associated isolates by pulsed-field gel electrophoresis of whole genomic DNA indicated that different strains were cocirculating within one hospital. The carbapenem-resistant phenotype of these and other Australian isolates was found to be due to carbapenem-hydrolyzing activity associated with the presence of the blaOXA-23 gene. In all resistant strains examined, the blaOXA-23 gene was adjacent to the insertion sequence ISAba1 in a structure that has been found in Acinetobacter baumannii strains of a similar phenotype from around the world; blaOXA-51-like genes were also found in all A. baumannii strains but were not consistently associated with ISAba1, which is believed to provide the promoter required for expression of linked antibiotic resistance genes. Most isolates were also found to contain additional antibiotic resistance genes within the cassette arrays of class 1 integrons. The same cassette arrays, in addition to the ISAba1-blaOXA-23 structure, were found within unrelated strains, but no common plasmid carrying these accessory genetic elements could be identified. It therefore appears that antibiotic resistance genes are readily exchanged between cocirculating strains in epidemics of phenotypically indistinguishable organisms. Epidemiological investigation of major outbreaks should include whole-genome typing as well as analysis of potentially transmissible resistance genes and their vehicles.
doi:10.1128/JCM.01971-06
PMCID: PMC1829019  PMID: 17108068
4.  Naturally Transformable Acinetobacter sp. Strain ADP1 Belongs to the Newly Described Species Acinetobacter baylyi 
Genotypic and phenotypic analyses were carried out to clarify the taxonomic position of the naturally transformable Acinetobacter sp. strain ADP1. Transfer tDNA-PCR fingerprinting, 16S rRNA gene sequence analysis, and selective restriction fragment amplification (amplified fragment length polymorphism analysis) indicate that strain ADP1 and a second transformable strain, designated 93A2, are members of the newly described species Acinetobacter baylyi. Transformation assays demonstrate that the A. baylyi type strain B2T and two other originally identified members of the species (C5 and A7) also have the ability to undergo natural transformation at high frequencies, confirming that these five strains belong to a separate species of the genus Acinetobacter, characterized by the high transformability of its strains that have been cultured thus far.
doi:10.1128/AEM.72.1.932-936.2006
PMCID: PMC1352221  PMID: 16391138
5.  Standardization and Interlaboratory Reproducibility Assessment of Pulsed-Field Gel Electrophoresis-Generated Fingerprints of Acinetobacter baumannii 
Journal of Clinical Microbiology  2005;43(9):4328-4335.
A standard procedure for pulsed-field gel electrophoresis (PFGE) of macrorestriction fragments of Acinetobacter baumannii was set up and validated for its interlaboratory reproducibility and its potential for use in the construction of an Internet-based database for international monitoring of epidemic strains. The PFGE fingerprints of strains were generated at three different laboratories with ApaI as the restriction enzyme and by a rigorously standardized procedure. The results were analyzed at the respective laboratories and also centrally at a national reference institute. In the first phase of the study, 20 A. baumannii strains, including 3 isolates each from three well-characterized hospital outbreaks and 11 sporadic strains, were distributed blindly to the participating laboratories. The local groupings of the isolates in each participating laboratory were identical and allowed the identification of the epidemiologically related isolates as belonging to three clusters and identified all unrelated strains as distinct. Central pattern analysis by using the band-based Dice coefficient and the unweighted pair group method with mathematical averaging as the clustering algorithm showed 95% matching of the outbreak strains processed at each local laboratory and 87% matching of the corresponding strains if they were processed at different laboratories. In the second phase of the study, 30 A. baumannii isolates representing 10 hospital outbreaks from different parts of Europe (3 isolates per outbreak) were blindly distributed to the three laboratories, so that each laboratory investigated 10 epidemiologically independent outbreak isolates. Central computer-assisted cluster analysis correctly identified the isolates according to their corresponding outbreak at an 87% clustering threshold. In conclusion, the standard procedure enabled us to generate PFGE fingerprints of epidemiologically related A. baumannii strains at different locations with sufficient interlaboratory reproducibility to set up an electronic database to monitor the geographic spread of epidemic strains.
doi:10.1128/JCM.43.9.4328-4335.2005
PMCID: PMC1234071  PMID: 16145073
6.  Comparison of Acinetobacter baumannii Isolates from United Kingdom Hospitals with Predominant Northern European Genotypes by Amplified-Fragment Length Polymorphism Analysis 
Journal of Clinical Microbiology  2004;42(2):832-834.
Acinetobacter baumannii isolates collected between 1999 and 2001 from 46 United Kingdom hospitals were compared with previously identified northern European genotypes by amplified-fragment length polymorphism (AFLP) analysis. Two predominant northern European genotypes associated with outbreaks in the mid-1980s had been superseded by new outbreak-associated genotypes.
doi:10.1128/JCM.42.2.832-834.2004
PMCID: PMC344483  PMID: 14766864

Results 1-6 (6)