PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-14 (14)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  High salt intake causes adverse fetal programming—vascular effects beyond blood pressure 
Nephrology Dialysis Transplantation  2012;27(9):3464-3476.
Do detrimental effects on the vasculature of a high dietary sodium intake precede the development of hypertension?
Background
High salt intake causes hypertension, adverse cardiovascular outcomes and potentially also blood pressure (BP)-independent target organ damage. Excess salt intake in pregnancy is known to affect BP in the offspring. The present study was designed to assess whether high salt intake in pregnancy affects BP and vascular morphology in the offspring.
Methods
Sprague–Dawley rats were fed a standard rodent diet with low–normal (0.15%) or high (8.0%) salt content during pregnancy and lactation. After weaning at 4 weeks of age, offspring were maintained on the same diet or switched to a high- or low-salt diet, respectively. Vascular geometry was assessed in male offspring at 7 and 12 weeks postnatally.
Results
Up to 12 weeks of age, there was no significant difference in telemetrically measured BP between the groups of offspring. At 12 weeks of age, wall thickness of central (aorta, carotid), muscular (mesenteric) and intrapulmonary arteries was significantly higher in offspring of mothers on a high-salt diet irrespective of the post-weaning diet. This correlated with increased fibrosis of the aortic wall, more intense nitrotyrosine staining as well as elevated levels of marinobufagenin (MBG) and asymmetric dimethyl arginine (ADMA).
Conclusions
High salt intake in pregnant rats has long-lasting effects on the modeling of central and muscular arteries in the offspring independent of postnatal salt intake and BP. Circulating MBG and ADMA and local oxidative stress correlate with the adverse vascular modeling.
doi:10.1093/ndt/gfs027
PMCID: PMC3433771  PMID: 22431707
blood pressure; fetal programming; nitric oxide; salt; vessel development
2.  Circulating Dopamine and C-Peptide Levels in Fasting Nondiabetic Hypertensive Patients 
Diabetes Care  2012;35(8):1771-1773.
OBJECTIVE
Accumulating evidence supports a potential role for dopamine in the regulation of insulin secretion. We examined the association between circulating dopamine and C-peptide concentrations using data from the Graz Endocrine Causes of Hypertension (GECOH) study.
RESEARCH DESIGN AND METHODS
After 12 h of fasting, we measured plasma dopamine and serum C-peptide levels and established determining factors of insulin secretion in 201 nondiabetic hypertensive patients (mean age 48.1 ± 16.0 years; 61.7% women).
RESULTS
Mean dopamine and C-peptide concentration were 33.4 ± 38.6 pg/mL and 3.1 ± 2.7 ng/mL, respectively. A strong and inverse correlation was observed between dopamine and C-peptide levels (r = −0.423, P < 0.001). There was no significant relationship between C-peptide, plasma epinephrine, and norepinephrine. C-peptide levels decreased steadily and significantly from tertile 1 of dopamine (3.6 ng/mL [95% CI 2.9–4.1]) to tertile 3 (1.6 ng/mL [1.5–2.7], P < 0.001) after multivariate adjustment.
CONCLUSIONS
The inverse association between dopamine and C-peptide highlights the need to evaluate whether dopamine could be effective for modulating endocrine pancreatic function.
doi:10.2337/dc11-2384
PMCID: PMC3402263  PMID: 22699284
3.  Effects of paricalcitol on calcium and phosphate metabolism and markers of bone health in patients with diabetic nephropathy: results of the VITAL study 
Nephrology Dialysis Transplantation  2013;28(9):2260-2268.
Background
Chronic kidney disease (CKD) is associated with elevations in serum phosphate, calcium–phosphorus product and bone-specific alkaline phosphatase (BAP), with attendant risks of cardiovascular and bone disorders. Active vitamin D can suppress parathyroid hormone (PTH), but may raise serum calcium and phosphate concentrations. Paricalcitol, a selective vitamin D activator, suppressed PTH in CKD patients (stages 3 and 4) with secondary hyperparathyroidism (SHPT) with minimal changes in calcium and phosphate metabolism.
Methods
The VITAL study enrolled patients with CKD stages 2–4. We examined the effect and relationship of paricalcitol to calcium and phosphate metabolism and bone markers in a post hoc analysis of VITAL. The study comprised patients with diabetic nephropathy enrolled in a double-blind, placebo-controlled, randomized trial of paricalcitol (1 or 2 μg/day). Urinary and serum calcium and phosphate, serum BAP, and intact PTH (iPTH) concentrations were measured throughout the study.
Results
Baseline demographics and calcium, phosphate, PTH (49% with iPTH <70 pg/mL), and BAP concentrations were similar between groups. A transient, modest yet significant increase in phosphate was observed for paricalcitol 2 μg/day (+0.29 mg/dL; P < 0.001). Dose-dependent increases in serum and urinary calcium were observed; however, there were few cases of hypercalcemia: one in the 1-μg/day group (1.1%) and three in the 2-μg/day group (3.2%). Significant reductions in BAP were observed that persisted for 60 days after paricalcitol discontinuation (P < 0.001 for combined paricalcitol groups versus placebo). Paricalcitol dose-dependent reductions in iPTH were observed. Paricalcitol in CKD patients (±SHPT) was associated with modest increases in calcium and phosphate.
Conclusion
Paricalcitol reduces BAP levels, which may be beneficial for reducing vascular calcification.
Trial registration
Trial is registered with ClinicalTrials.gov, number NCT00421733.
doi:10.1093/ndt/gft227
PMCID: PMC3769981  PMID: 23787544
bone-specific alkaline phosphatase; calcitriol; hypercalcemia; hyperphosphatemia; paricalcitol; vitamin D receptor activation
4.  Homoarginine and Progression of Chronic Kidney Disease: Results from the Mild to Moderate Kidney Disease Study 
PLoS ONE  2013;8(5):e63560.
Background
Homoarginine is an amino acid derivative mainly synthesized in the kidney. It is suggested to increase nitric oxide availability, enhance endothelial function and to protect against cardiovascular diseases. We aimed to investigate the relation between homoarginine, kidney function and progression of chronic kidney disease (CKD).
Methods
We measured plasma homoarginine concentrations in baseline samples of the Mild to Moderate Kidney Disease (MMKD) Study, a prospective cohort study of 227 patients with CKD in Europe. Homoarginine concentrations were available in 182 of the baseline samples and in 139 of the prospectively-followed patients. We correlated homoarginine concentrations to parameters of kidney function. The association between homoarginine and progression of CKD was assessed during a follow-up of up to seven years (median 4.45 years, interquartile range 2.54–5.19) using Cox regression analysis. Progression of CKD was defined as doubling of baseline serum creatinine and/or end-stage renal disease.
Results
Study participants were at baseline on average 47±13 years old and 65% were male. Mean±standard deviation of homoarginine concentrations were 2.5±1.1 µmol/L and concentrations were incrementally lower at lower levels of GFR with mean concentrations of 2.90±1.02 µmol/L (GFR>90 ml/min), 2.64±1.06 µmol/L (GFR 60–90 ml/min), 2.52±1.24 µmol/L (GFR 30–60 ml/min) and 2.05±0.78 µmol/L (GFR<30 ml/min), respectively (p = 0.002). The age- and sex-adjusted risk to reach the renal endpoint was significantly higher by 62% with each decrease by one standard deviation (1.1 µmol/L) of homoarginine (HR 1.62, 95% CI 1.16–2.27, p = 0.005). This association was independent of proteinuria (HR 1.56, 95% CI 1.11–2.20, p = 0.01), and was slightly attenuated when adjusting for GFR (HR 1.40 (95% CI 0.98–1.98, p = 0.06).
Conclusions
Homoarginine concentrations are directly correlated with kidney function and are significantly associated with the progression of CKD. Low homoarginine concentrations might be an early indicator of kidney failure and a potential target for the prevention of disease progression which needs further investigations.
doi:10.1371/journal.pone.0063560
PMCID: PMC3655120  PMID: 23691067
5.  Aldosterone and cortisol affect the risk of sudden cardiac death in haemodialysis patients 
European Heart Journal  2012;34(8):578-587.
Background
Sudden cardiac death is common and accounts largely for the excess mortality of patients on maintenance dialysis. It is unknown whether aldosterone and cortisol increase the incidence of sudden cardiac death in dialysis patients.
Methods and results
We analysed data from 1255 diabetic haemodialysis patients participating in the German Diabetes and Dialysis Study (4D Study). Categories of aldosterone and cortisol were determined at baseline and patients were followed for a median of 4 years. By Cox regression analyses, hazard ratios (HRs) were determined for the effect of aldosterone, cortisol, and their combination on sudden death and other adjudicated cardiovascular outcomes. The mean age of the patients was 66 ± 8 years (54% male). Median aldosterone was <15 pg/mL (detection limit) and cortisol 16.8 µg/dL. Patients with aldosterone levels >200 pg/mL had a significantly higher risk of sudden death (HR: 1.69; 95% CI: 1.06–2.69) compared with those with an aldosterone <15 pg/mL. The combined presence of high aldosterone (>200 pg/mL) and high cortisol (>21.1 µg/dL) levels increased the risk of sudden death in striking contrast to patients with low aldosterone (<15 pg/mL) and low cortisol (<13.2 µg/dL) levels (HR: 2.86, 95% CI: 1.32–6.21). Furthermore, all-cause mortality was significantly increased in the patients with high levels of both hormones (HR: 1.62, 95% CI: 1.01–2.62).
Conclusions
The joint presence of high aldosterone and high cortisol levels is strongly associated with sudden cardiac death as well as all-cause mortality in haemodialysed type 2 diabetic patients. Whether a blockade of the mineralocorticoid receptor decreases the risk of sudden death in these patients must be examined in future trials.
doi:10.1093/eurheartj/ehs361
PMCID: PMC3578266  PMID: 23211232
Aldosterone; Cortisol; Sudden cardiac death; Cardiovascular events; Mortality; Kidney disease
6.  Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial 
Background
Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess.
Methods/design
Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease.
The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1) parathyroid hormone(1–84) as the primary endpoint and (2) 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints.
Discussion
In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism.
Trial registration
ISRCTN33941607
doi:10.1186/1472-6823-12-19
PMCID: PMC3515510  PMID: 22974443
Aldosterone; Mineralocorticoid receptor blocker; Hyperparathyroidism
7.  Limitations and Future Treatment Options in Type 2 Diabetes With Renal Impairment 
Diabetes Care  2011;34(Suppl 2):S330-S334.
doi:10.2337/dc11-s242
PMCID: PMC3632202  PMID: 21525478
8.  Homoarginine, heart failure, and sudden cardiac death in haemodialysis patients 
European Journal of Heart Failure  2011;13(8):852-859.
Aims
Sudden cardiac death (SCD) is a major contributor to the excess mortality of patients on maintenance dialysis. Homoarginine deficiency may lead to decreased nitric oxide availability and endothelial dysfunction. Based on this rationale we assessed whether homoarginine deficiency is a risk factor for SCD in dialysis patients.
Methods and results
This study examined the association of homoarginine with cardiovascular outcomes in 1255 diabetic haemodialysis patients from the German diabetes and dialysis study. During a median of 4 years of follow-up, hazard ratios (HR) (95% CI) for reaching the following pre-specified, adjudicated endpoints were determined: SCD, myocardial infarction, stroke, death due to heart failure, and combined cardiovascular events. There was a strong association of low homoarginine concentrations with the presence of congestive heart failure and left ventricular hypertrophy as well as increased levels of brain natriuretic peptide. Per unit decrease in homoarginine, the risk of SCD increased three-fold (HR 3.1, 95% CI 2.0–4.9), attenuating slightly in multivariate models (HR 2.4; 95% CI 1.5–3.9). Patients in the lowest homoarginine quintile experienced a more than two-fold increased risk of SCD, and more than three-fold increased risk of heart failure death than patients in the highest quintile, which accounted for the high incidence of combined cardiovascular events. Low homoarginine showed a trend towards increased risk of stroke, however, myocardial infarction was not meaningfully affected.
Conclusion
Low homoarginine is a strong risk factor for SCD and death due to heart failure in haemodialysis patients. Further studies are needed to elucidate the underlying mechanisms, offering the potential to develop new interventional strategies.
doi:10.1093/eurjhf/hfr056
PMCID: PMC3143829  PMID: 21791541
Homoarginine; Sudden cardiac death; Heart failure; Amino acids; Haemodialysis
9.  High-Dose Enalapril Treatment Reverses Myocardial Fibrosis in Experimental Uremic Cardiomyopathy 
PLoS ONE  2011;6(1):e15287.
Aims
Patients with renal failure develop cardiovascular alterations which contribute to the higher rate of cardiac death. Blockade of the renin angiotensin system ameliorates the development of such changes. It is unclear, however, to what extent ACE-inhibitors can also reverse existing cardiovascular alterations. Therefore, we investigated the effect of high dose enalapril treatment on these alterations.
Methods
Male Sprague Dawley rats underwent subtotal nephrectomy (SNX, n = 34) or sham operation (sham, n = 39). Eight weeks after surgery, rats were sacrificed or allocated to treatment with either high-dose enalapril, combination of furosemide/dihydralazine or solvent for 4 weeks. Heart and aorta were evaluated using morphometry, stereological techniques and TaqMan PCR.
Results
After 8 and 12 weeks systolic blood pressure, albumin excretion, and left ventricular weight were significantly higher in untreated SNX compared to sham. Twelve weeks after SNX a significantly higher volume density of cardiac interstitial tissue (2.57±0.43% in SNX vs 1.50±0.43% in sham, p<0.05) and a significantly lower capillary length density (4532±355 mm/mm3 in SNX vs 5023±624 mm/mm3 in sham, p<0.05) were found. Treatment of SNX with enalapril from week 8–12 significantly improved myocardial fibrosis (1.63±0.25%, p<0.05), but not capillary reduction (3908±486 mm/mm3) or increased intercapillary distance. In contrast, alternative antihypertensive treatment showed no such effect. Significantly increased media thickness together with decreased vascular smooth muscles cell number and a disarray of elastic fibres were found in the aorta of SNX animals compared to sham. Both antihypertensive treatments failed to cause complete regression of these alterations.
Conclusions
The study indicates that high dose ACE-I treatment causes partial, but not complete, reversal of cardiovascular changes in SNX.
doi:10.1371/journal.pone.0015287
PMCID: PMC3029304  PMID: 21298056
10.  Renal protection in diabetes: lessons from ONTARGET® 
Hypertension is an important independent risk factor for renal disease. If hypertension and chronic renal disease co-exist, as is common in patients with diabetes mellitus, the risk of cardiovascular disease is heightened. The importance of rigorous blood pressure control is recognized in current guidelines, with a recommended target of office blood pressure of < 130/80 mmHg; although ambulatory blood pressure may be more appropriate in order to identify the 24-hour hypertensive burden. Even lower blood pressure may further reduce the progression of chronic kidney disease, but the incidence of cardiovascular events may increase. Albuminuria not only indicates renal damage, but is also a powerful predictor of cardiovascular morbidity and mortality at least in patients with high cardiovascular risk and potentially pre-existing vascular damage. Management of the multiple factors for renal and cardiovascular disease is mandatory in the diabetic patient. The renin-angiotensin system (RAS) plays a pivotal role in the progression of renal disease, as well as in hypertension and target-organ damage. The use of agents that target the RAS confer renoprotection in addition to antihypertensive activity. There is extensive evidence of the renoprotective effect of angiotensin II receptor blockers (ARBs), and specifically telmisartan. In addition to providing 24-hour blood pressure control, clinical studies in patients with diabetes show that telmisartan improves renal endothelial function, prevents progression from microalbuminuria to macroalbuminuria, slows the decline in glomerular filtration rate and reduces proteinuria in overt nephropathy. These effects cannot be solely attributed to blood pressure control. In contrast to other members of the ARB class, the renoprotective effect of telmisartan is not confined to the management of diabetic nephropathy; slowing the progression of albuminuria has been demonstrated in the ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET®), which included diabetic and non-diabetic patients at high risk of cardiovascular events.
doi:10.1186/1475-2840-9-60
PMCID: PMC2959007  PMID: 20920303
11.  Vitamin D deficiency is associated with sudden cardiac death, combined cardiovascular events, and mortality in haemodialysis patients 
European Heart Journal  2010;31(18):2253-2261.
Aims
Dialysis patients experience an excess mortality, predominantly of sudden cardiac death (SCD). Accumulating evidence suggests a role of vitamin D for myocardial and overall health. This study investigated the impact of vitamin D status on cardiovascular outcomes and fatal infections in haemodialysis patients.
Methods and results
25-hydroxyvitamin D [25(OH)D] was measured in 1108 diabetic haemodialysis patients who participated in the German Diabetes and Dialysis Study and were followed up for a median of 4 years. By Cox regression analyses, we determined hazard ratios (HR) for pre-specified, adjudicated endpoints according to baseline 25(OH)D levels: SCD (n = 146), myocardial infarction (MI, n = 174), stroke (n = 89), cardiovascular events (CVE, n = 414), death due to heart failure (n = 37), fatal infection (n = 111), and all-cause mortality (n = 545). Patients had a mean age of 66 ± 8 years (54% male) and median 25(OH)D of 39 nmol/L (interquartile range: 28–55). Patients with severe vitamin D deficiency [25(OH)D of≤ 25 nmol/L] had a 3-fold higher risk of SCD compared with those with sufficient 25(OH)D levels >75 nmol/L [HR: 2.99, 95% confidence interval (CI): 1.39–6.40]. Furthermore, CVE and all-cause mortality were strongly increased (HR: 1.78, 95% CI: 1.18–2.69, and HR: 1.74, 95% CI: 1.22–2.47, respectively), all persisting in multivariate models. There were borderline non-significant associations with stroke and fatal infection while MI and deaths due to heart failure were not meaningfully affected.
Conclusion
Severe vitamin D deficiency was strongly associated with SCD, CVE, and mortality, and there were borderline associations with stroke and fatal infection. Whether vitamin D supplementation decreases adverse outcomes requires further evaluation.
doi:10.1093/eurheartj/ehq246
PMCID: PMC2938469  PMID: 20688781
Vitamin D; Sudden cardiac death; Mortality; Dialysis; Kidney; Cardiovascular
12.  The association between parathyroid hormone and mortality in dialysis patients is modified by wasting 
Nephrology Dialysis Transplantation  2009;24(10):3151-3157.
Background. The association between parathyroid hormone (PTH) level and mortality in dialysis patients is controversial. We hypothesized that wasting, a common condition potentially related to adynamic bone disease, modifies the association of PTH with mortality and cardiovascular events (CVE), respectively.
Methods. We analysed data from 1255 diabetic haemodialysis patients, participating in the German Diabetes and Dialysis Study between 1998 and 2004. The patients were stratified by the presence or absence of wasting (albumin ≤3.8 versus albumin >3.8 g/dL; BMI ≤23 versus BMI >23 kg/m2). Using Cox regression analyses, we calculated the risks of (1) all-cause mortality and (2) CVE according to baseline PTH levels. All analyses were adjusted for age, sex, atorvastatin treatment, duration of dialysis, comorbidity, HbA1c, phosphate, calcium, blood pressure, haemoglobin and C-reactive protein.
Results. Patients had a mean age of 66 ± 8 years, and 54% were male. Among patients without wasting (albumin >3.8 g/dL, n = 586), the risks of death and CVE during 4 years of follow-up significantly increased by 23% and 20% per unit increase in logPTH. Patients in the highest PTH tertile had a 74% higher risk of death (HRadj 1.74, 95% CI 1.27–2.40) and a 49% higher risk of CVE (HRadj 1.49, 95% CI 1.05–2.11) compared to patients in the lowest PTH tertile. In contrast, no effect was found in patients with wasting. Accordingly, additional analyses in strata of BMI showed that PTH significantly impacted on death and CVE [HR(logPTH)adj 1.15 and 1.14, respectively] only in patients without, but not in patients with, wasting.
Conclusions. Wasting modifies the association of PTH with adverse outcomes in diabetic dialysis patients. High PTH levels are of concern in the patients without wasting, while the effect of PTH on mortality is nullified in the patients with wasting.
doi:10.1093/ndt/gfp260
PMCID: PMC2747498  PMID: 19474272
cardiovascular events; haemodialysis; mortality; parathyroid hormone; wasting
13.  Salt restriction in kidney disease—a missed therapeutic opportunity? 
The importance of salt restriction in the treatment of patients with renal disease has remained highly controversial. In the following we marshal the current evidence that salt plays a definite role in the genesis of hypertension and target organ damage, point to practical problems of salt restriction, and report on novel pathomechanisms of how salt affects blood pressure and causes target organ damage.
doi:10.1007/s00467-008-0856-4
PMCID: PMC2644745  PMID: 18535843
Chronic kidney disease (CKD); Salt intake; Salt restriction; Programming of blood pressure; Hypertension; Target organ damage; Cardiotonic steroids
14.  Gene Expression Profiling on Global cDNA Arrays Gives Hints Concerning Potential Signal Transduction Pathways Involved in Cardiac Fibrosis of Renal Failure 
Cardiac remodelling with interstitial fibrosis in renal failure, which so far is only poorly understood on the molecular level, was investigated in the rat model by a global gene expression profiling analysis. Sprague–Dawley rats were subjected to subtotal nephrectomy (SNX) or sham operation (sham) and followed for 2 and 12 weeks, respectively. Heart-specific gene expression profiling, with RZPD Rat Unigene-1 cDNA arrays containing about 27 000 gene and EST sequences revealed substantial changes in gene expression in SNX compared to sham animals. Motor protein genes, growth and differentiation markers, and extracellular matrix genes were upregulated in SNX rats. Obviously, not only genes involved in cardiomyocyte hypertrophy, but also genes involved in the expansion of non-vascular interstitial tissue are activated very early in animals with renal failure. Together with earlier findings in the SNX model, the present data suggest the hypothesis that the local renin–angiotensin system (RAS) may be activated by at least two pathways: (a) via second messengers and Gproteins (short-term signalling); and (b) via motor proteins, actins and integrins (longterm signalling). The study documents that complex hybridization analysis yields reproducible and promising results of patterns of gene activation pointing to signalling pathways involved in cardiac remodelling in renal failure. The complete array data are available via http://www.rzpd.de/cgi-bin/services/exp/viewExpressionData.pl.cgi
doi:10.1002/cfg.347
PMCID: PMC2447303  PMID: 18629021

Results 1-14 (14)