PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-7 (7)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Transplantation Tolerance to a Single Noninherited MHC Class I Maternal Alloantigen Studied in a TCR-Transgenic Mouse Model 
The mechanisms underlying tolerance to noninherited maternal Ags (NIMA) are not fully understood. In this study, we designed a double-transgenic model in which all the offspring’s CD8+ T cells corresponded to a single clone recognizing the Kb MHC class I protein. In contrast, the mother and the father of the offspring differed by the expression of a single Ag, Kb, that served as NIMA. We investigated the influence of NIMA exposure on the offspring thymic T cell selection during ontogeny and on its peripheral T cell response during adulthood. We observed that anti-Kb thymocytes were exposed to NIMA and became activated during fetal life but were not deleted. Strikingly, adult mice exposed to NIMA accepted permanently Kb+ heart allografts despite the presence of normal levels of anti-Kb TCR transgenic T cells. Transplant tolerance was associated with a lack of a proinflammatory alloreactive T cell response and an activation/expansion of T cells producing IL-4 and IL-10. In addition, we observed that tolerance to NIMA Kb was abrogated via depletion of CD4+ but not CD8+ T cells and could be transferred to naive nonexposed mice via adoptive transfer of CD4+CD25high T cell expressing Foxp3 isolated from NIMA mice.
doi:10.4049/jimmunol.1003023
PMCID: PMC3774109  PMID: 21178009
2.  The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins 
PLoS Pathogens  2011;7(10):e1002309.
The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family –but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.
Author Summary
In mammals, nearly half the genome is composed of reiterated scattered sequences. Some of them, called endogenous retroviruses, have a structure similar to that observed for the integrated form of infectious retroviruses. The current theory to account for their presence is that an infectious retrovirus once infected the germline of its host. This viral genome was then transmitted to the progeny and expressed from there, producing new infectious particles, which could re-infect new germline cells and thus increase the viral genomic copy number. However no evidence has yet been provided to support this model. In this study, we identify a family of five cellular proteins, the Ephrin As, as receptors for a model mouse family of endogenous retroviruses, the IAPE elements. We analyse their expression pattern and show that both the oocytes and some male germline cells express Ephrin A proteins and can thus be infected by IAPE particles. This finding strongly supports the current model of ERVs amplification. In addition, the IAPE envelope ability to use five different cellular receptors suggests that it might be impossible for the host to evolve a resistance against this viral element, and provides a clue on how the IAPE family survived so long in the mouse genome.
doi:10.1371/journal.ppat.1002309
PMCID: PMC3197615  PMID: 22028653
5.  Identification of an endogenous retroviral envelope gene with fusogenic activity and placenta-specific expression in the rabbit: a new "syncytin" in a third order of mammals 
Retrovirology  2009;6:107.
Background
Syncytins are envelope genes of retroviral origin that have been co-opted by the host to mediate a specialized function in placentation. Two of these genes have already been identified in primates, as well as two distinct, non orthologous genes in rodents.
Results
Here we identified within the rabbit Oryctolagus cuniculus-which belongs to the lagomorpha order- an envelope (env) gene of retroviral origin with the characteristic features of a bona fide syncytin, that we named syncytin-Ory1. An in silico search for full-length env genes with an uninterrupted open reading frame within the rabbit genome first identified two candidate genes that were tested for their specific expression in the placenta by quantitative RT-PCR of RNA isolated from a large set of tissues. This resulted in the identification of an env gene with placenta-specific expression and belonging to a family of endogenous retroelements present at a limited copy number in the rabbit genome. Functional characterization of the identified placenta-expressed env gene after cloning in a CMV-driven expression vector and transient transfection experiments, demonstrated both fusogenic activity in an ex vivo cell-cell fusion assay and infectivity of pseudotypes. The receptor for the rabbit syncytin-Ory1 was found to be the same as that for human syncytin-1, i.e. the previously identified ASCT2 transporter. This was demonstrated by a co-culture fusion assay between hamster A23 cells transduced with an expression vector for ASCT2 and A23 cells transduced with syncytin-Ory1. Finally, in situ hybridization of rabbit placenta sections with a syncytin-Ory1 probe revealed specific expression at the level of the junctional zone between the placental lobe and the maternal decidua, where the invading syncytial fetal tissue contacts the maternal decidua to form the labyrinth, consistent with a role in the formation of the syncytiotrophoblast. The syncytin-Ory1 gene is found in Leporidae but not in Ochotonidae, and should therefore have entered the lagomorpha order 12-30 million years ago.
Conclusion
The identification of a novel syncytin gene within a third order of mammals displaying syncytiotrophoblast formation during placentation strongly supports the notion that on several occasions retroviral infections have resulted in the independent capture of genes that have been positively selected for a convergent physiological role.
doi:10.1186/1742-4690-6-107
PMCID: PMC2789053  PMID: 19943933

Results 1-7 (7)