PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Synergistic interaction between cisplatin and PARP inhibitors in non-small cell lung cancer 
Cell Cycle  2013;12(6):877-883.
The antineoplastic agent cis-diammineplatinum(II) dichloride (cisplatin, CDDP) is part of the poorly effective standard treatment of non-small cell lung carcinoma (NSCLC). Here, we report a novel strategy to improve the efficacy of CDDP. In conditions in which CDDP alone or either of two PARP inhibitors, PJ34 hydrochloride hydrate or CEP 8983, used as standalone treatments were inefficient in killing NSCLC cells, the combination of CDDP plus PJ34 or that of CDDP plus CEP 8983 were found to kill a substantial fraction of the cells. This cytotoxic synergy could be recapitulated by combining CDDP and the siRNA-mediated depletion of the principal PARP isoform, PARP1, indicating that it is mediated by on-target effects of PJ34 or CEP 8983. CDDP and PARP inhibitors synergized in inducing DNA damage foci, mitochondrial membrane permeabilization leading to cytochrome c release, and dissipation of the inner transmembrane potential, caspase activation, plasma membrane rupture and loss of clonogenic potential in NSCLC cells. Collectively, our results indicate that CDDP can be advantageously combined with PARP inhibitors to kill several NSCLC cell lines, independently from their p53 status. Combined treatment with CDDP and PARP inhibitors elicits the intrinsic pathway of apoptosis.
doi:10.4161/cc.24034
PMCID: PMC3637345  PMID: 23428903
apoptosis; CEP 8983; DNA damage response; A549 cells; PJ34 hydrochloride; small-interfering RNA
2.  Immunosurveillance against tetraploidization-induced colon tumorigenesis 
Cell Cycle  2013;12(3):473-479.
Circumstantial evidence suggests that colon carcinogenesis can ensue the transient tetraploidization of (pre-)malignant cells. In line with this notion, the tumor suppressors APC and TP53, both of which are frequently inactivated in colon cancer, inhibit tetraploidization in vitro and in vivo. Here, we show that—contrarily to their wild-type counterparts—Tp53−/− colonocytes are susceptible to drug-induced or spontaneous tetraploidization in vitro. Colon organoids generated from tetraploid Tp53−/− cells exhibit a close-to-normal morphology as compared to their diploid Tp53−/− counterparts, yet the colonocytes constituting these organoids are characterized by an increased cell size and an elevated expression of the immunostimulatory protein calreticulin on the cell surface. The subcutaneous injection of tetraploid Tp53−/− colon organoids led to the generation of proliferating tumors in immunodeficient, but not immunocompetent, mice. Thus, tetraploid Tp53−/− colonocytes fail to survive in immunocompetent mice and develop neoplastic lesions in immunocompromised settings only. These results suggest that tetraploidy is particularly oncogenic in the context of deficient immunosurveillance.
doi:10.4161/cc.23369
PMCID: PMC3587448  PMID: 23324343
apoptosis; cell cycle; cytochalasin D; mitotic catastrophe; nocodazole; p53
3.  Pro-autophagic polyphenols reduce the acetylation of cytoplasmic proteins 
Cell Cycle  2012;11(20):3851-3860.
Resveratrol is a polyphenol contained in red wine that has been amply investigated for its beneficial effects on organismal metabolism, in particular in the context of the so-called “French paradox,” i.e., the relatively low incidence of coronary heart disease exhibited by a population with a high dietary intake of cholesterol and saturated fats. At least part of the beneficial effect of resveratrol on human health stems from its capacity to promote autophagy by activating the NAD-dependent deacetylase sirtuin 1. However, the concentration of resveratrol found in red wine is excessively low to account alone for the French paradox. Here, we investigated the possibility that other mono- and polyphenols contained in red wine might induce autophagy while affecting the acetylation levels of cellular proteins. Phenolic compounds found in red wine, including anthocyanins (oenin), stilbenoids (piceatannol), monophenols (caffeic acid, gallic acid) glucosides (delphinidin, kuronamin, peonidin) and flavonoids (catechin, epicatechin, quercetin, myricetin), were all capable of stimulating autophagy, although with dissimilar potencies. Importantly, a robust negative correlation could be established between autophagy induction and the acetylation levels of cytoplasmic proteins, as determined by a novel immunofluorescence staining protocol that allows for the exclusion of nuclear components from the analysis. Inhibition of sirtuin 1 by both pharmacological and genetic means abolished protein deacetylation and autophagy as stimulated by resveratrol, but not by piceatannol, indicating that these compounds act through distinct molecular pathways. In support of this notion, resveratrol and piceatannol synergized in inducing autophagy as well as in promoting cytoplasmic protein deacetylation. Our results highlight a cause-effect relationship between the deacetylation of cytoplasmic proteins and autophagy induction by red wine components.
doi:10.4161/cc.22027
PMCID: PMC3495827  PMID: 23070521
Beclin 1; LC3; longevity; p62/SQSTM1; trichostatin A; U2OS
4.  Functions of BCL-XL at the Interface between Cell Death and Metabolism 
The BCL-2 homolog BCL-XL, one of the two protein products of BCL2L1, has originally been characterized for its prominent prosurvival functions. Similar to BCL-2, BCL-XL binds to its multidomain proapoptotic counterparts BAX and BAK, hence preventing the formation of lethal pores in the mitochondrial outer membrane, as well as to multiple BH3-only proteins, thus interrupting apical proapoptotic signals. In addition, BCL-XL has been suggested to exert cytoprotective functions by sequestering a cytosolic pool of the pro-apoptotic transcription factor p53 and by binding to the voltage-dependent anion channel 1 (VDAC1), thereby inhibiting the so-called mitochondrial permeability transition (MPT). Thus, BCL-XL appears to play a prominent role in the regulation of multiple distinct types of cell death, including apoptosis and regulated necrosis. More recently, great attention has been given to the cell death-unrelated functions of BCL-2-like proteins. In particular, BCL-XL has been shown to modulate a number of pathophysiological processes, including—but not limited to—mitochondrial ATP synthesis, protein acetylation, autophagy and mitosis. In this short review article, we will discuss the functions of BCL-XL at the interface between cell death and metabolism.
doi:10.1155/2013/705294
PMCID: PMC3603586  PMID: 23533418
5.  Selective killing of p53-deficient cancer cells by SP600125 
EMBO Molecular Medicine  2012;4(6):500-514.
The genetic or functional inactivation of p53 is highly prevalent in human cancers. Using high-content videomicroscopy based on fluorescent TP53+/+ and TP53−/− human colon carcinoma cells, we discovered that SP600125, a broad-spectrum serine/threonine kinase inhibitor, kills p53-deficient cells more efficiently than their p53-proficient counterparts, in vitro. Similar observations were obtained in vivo, in mice carrying p53-deficient and -proficient human xenografts. Such a preferential cytotoxicity could be attributed to the failure of p53-deficient cells to undergo cell cycle arrest in response to SP600125. TP53−/− (but not TP53+/+) cells treated with SP600125 became polyploid upon mitotic abortion and progressively succumbed to mitochondrial apoptosis. The expression of an SP600125-resistant variant of the mitotic kinase MPS1 in TP53−/− cells reduced SP600125-induced polyploidization. Thus, by targeting MPS1, SP600125 triggers a polyploidization program that cannot be sustained by TP53−/− cells, resulting in the activation of mitotic catastrophe, an oncosuppressive mechanism for the eradication of mitosis-incompetent cells.
doi:10.1002/emmm.201200228
PMCID: PMC3443949  PMID: 22438244
caspases; HCT 116; high-throughput screening; mitochondrial outer membrane permeabilization; MPS1

Results 1-5 (5)