PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
1.  Model Checking to Assess T-Helper Cell Plasticity 
Computational modeling constitutes a crucial step toward the functional understanding of complex cellular networks. In particular, logical modeling has proven suitable for the dynamical analysis of large signaling and transcriptional regulatory networks. In this context, signaling input components are generally meant to convey external stimuli, or environmental cues. In response to such external signals, cells acquire specific gene expression patterns modeled in terms of attractors (e.g., stable states). The capacity for cells to alter or reprogram their differentiated states upon changes in environmental conditions is referred to as cell plasticity. In this article, we present a multivalued logical framework along with computational methods recently developed to efficiently analyze large models. We mainly focus on a symbolic model checking approach to investigate switches between attractors subsequent to changes of input conditions. As a case study, we consider the cellular network regulating the differentiation of T-helper (Th) cells, which orchestrate many physiological and pathological immune responses. To account for novel cellular subtypes, we present an extended version of a published model of Th cell differentiation. We then use symbolic model checking to analyze reachability properties between Th subtypes upon changes of environmental cues. This allows for the construction of a synthetic view of Th cell plasticity in terms of a graph connecting subtypes with arcs labeled by input conditions. Finally, we explore novel strategies enabling specific Th cell polarizing or reprograming events.
doi:10.3389/fbioe.2014.00086
PMCID: PMC4309205
logical modeling; signaling networks; T-helper lymphocyte; cell differentiation; cell plasticity; model checking
2.  Characterization of resident and migratory dendritic cells in human lymph nodes 
Human skin-draining lymph nodes contain functionally distinct subsets of resident and migratory dendritic cells.
Dendritic cells (DCs) initiate adaptive immune responses in lymph nodes (LNs). In mice, LN DCs can be divided into resident and tissue-derived populations, the latter of which migrate from the peripheral tissues. In humans, different subsets of DCs have been identified in the blood, spleen, and skin, but less is known about populations of resident and migratory tissue-derived DCs in LNs. We have analyzed DCs in human LNs and identified two populations of resident DCs that are present in all LNs analyzed, as well as in the spleen and tonsil, and correspond to the two known blood DC subtypes. We also identify three main populations of skin-derived migratory DCs that are present only in skin-draining LNs and correspond to the DC subsets found in the skin. Resident DCs subsets induce both Th1 and Th2 cytokines in naive allogeneic T lymphocytes, whereas the corresponding blood subsets failed to induce efficient Th2 polarization. LN-resident DCs also cross-present antigen without in vitro activation, whereas blood DCs fail to do so. Among migratory DCs, one subset was poor at both CD4+ and CD8+ T cell activation, whereas the other subsets induced only Th2 polarization. We conclude that in humans, skin-draining LNs host both resident and migratory DC subsets with distinct functional abilities.
doi:10.1084/jem.20111457
PMCID: PMC3328358  PMID: 22430490
3.  TLR recognition of self nucleic acids hampers glucocorticoid activity in lupus 
Nature  2010;465(7300):937-941.
Glucocorticoids are widely used to treat patients with autoimmune diseases such as systemic lupus erythematosus (SLE)1,2. However, regimens used to treat many such conditions cannot maintain disease control in the majority of SLE patients and more aggressive approaches such as high-dose methylprednisolone pulse therapy are used to provide transient reductions in disease activity3,4. The primary anti-inflammatory mechanism of glucocorticoids is thought to be NF-κB inhibition5. Recognition of self nucleic acids by toll-like receptors TLR7 and TLR9 on B cells and plasmacytoid dendritic cells (PDCs) is an important step in the pathogenesis of SLE6, promoting anti-nuclear antibodies and the production of type I interferon (IFN), both correlated with the severity of disease1,7. Following their activation by self-nucleic acid-associated immune complexes, PDCs migrate to the tissues8,9. We demonstrate, in vitro and in vivo, that stimulation of PDCs through TLR7 and 9 can account for the reduced activity of glucocorticoids to inhibit the IFN pathway in SLE patients and in two lupus-prone mouse strains. The triggering of PDCs through TLR7 and 9 by nucleic acid-containing immune complexes or by synthetic ligands activates the NF-κB pathway essential for PDC survival. Glucocorticoids do not affect NF-κB activation in PDCs, preventing glucocorticoid induction of PDC death and the consequent reduction of systemic IFN-α levels. These findings unveil a new role for self nucleic acid recognition by TLRs and indicate that inhibitors of TLR7 and 9 signalling could prove to be effective corticosteroid-sparing drugs.
doi:10.1038/nature09102
PMCID: PMC2964153  PMID: 20559388
4.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
Background
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Results
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
Conclusions
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
doi:10.1186/1745-7580-6-10
PMCID: PMC3000836  PMID: 21092113
6.  PI3K is critical for the nuclear translocation of IRF-7 and type I IFN production by human plasmacytoid predendritic cells in response to TLR activation 
Plasmacytoid predendritic cells (pDCs) are the main producers of type I interferon (IFN) in response to Toll-like receptor (TLR) stimulation. Phosphatidylinositol-3 kinase (PI3K) has been shown to be activated by TLR triggering in multiple cell types; however, its role in pDC function is not known. We show that PI3K is activated by TLR stimulation in primary human pDCs and demonstrate, using specific inhibitors, that PI3K is required for type I IFN production by pDCs, both at the transcriptional and protein levels. Importantly, PI3K was not involved in other proinflammatory responses of pDCs, including tumor necrosis factor α and interleukin 6 production and DC differentiation. pDCs preferentially expressed the PI3K δ subunit, which was specifically involved in the control of type I IFN production. Although uptake and endosomal trafficking of TLR ligands were not affected in the presence of PI3K inhibitors, there was a dramatic defect in the nuclear translocation of IFN regulatory factor (IRF) 7, whereas nuclear factor κB activation was preserved. Thus, PI3K selectively controls type I IFN production by regulating IRF-7 nuclear translocation in human pDCs and could serve as a novel target to inhibit pathogenic type I IFN in autoimmune diseases.
doi:10.1084/jem.20070763
PMCID: PMC2271003  PMID: 18227218
7.  Human Dendritic Cells Activated by TSLP and CD40L Induce Proallergic Cytotoxic T Cells 
The Journal of Experimental Medicine  2003;197(8):1059-1063.
Human thymic stromal lymphopoietin (TSLP) is a novel epithelial cell–derived cytokine, which induces dendritic cell (DC)-mediated CD4+ T cell responses with a proallergic phenotype. Although the participation of CD8+ T cells in allergic inflammation is well documented, their functional properties as well as the pathways leading to their generation remain poorly understood. Here, we show that TSLP-activated CD11c+ DCs potently activate and expand naive CD8+ T cells, and induce their differentiation into interleukin (IL)-5 and IL-13–producing effectors exhibiting poor cytolytic activity. Additional CD40L triggering of TSLP-activated DCs induced CD8+ T cells with potent cytolytic activity, producing large amounts of interferon (IFN)-γ, while retaining their capacity to produce IL-5 and IL-13. These data further support the role of TSLP as initial trigger of allergic T cell responses and suggest that CD40L-expressing cells may act in combination with TSLP to amplify and sustain pro-allergic responses and cause tissue damage by promoting the generation of IFN-γ–producing cytotoxic effectors.
doi:10.1084/jem.20030240
PMCID: PMC2193883  PMID: 12707303
TSLP; CD11c+ DC; CD8+ T lymphocyte; allergy; cytotoxicity
8.  Distinct Cytokine Profiles of Neonatal Natural Killer T Cells after Expansion with Subsets of Dendritic Cells 
The Journal of Experimental Medicine  2001;193(10):1221-1226.
Natural killer T (NKT) cells are a highly conserved subset of T cells that have been shown to play a critical role in suppressing T helper cell type 1–mediated autoimmune diseases and graft versus host disease in an interleukin (IL)-4–dependent manner. Thus, it is important to understand how the development of IL-4– versus interferon (IFN)-γ–producing NKT cells is regulated. Here, we show that NKT cells from adult blood and those from cord blood undergo massive expansion in cell numbers (500–70,000-fold) during a 4-wk culture with IL-2, IL-7, phytohemagglutinin, anti-CD3, and anti-CD28 mAbs. Unlike adult NKT cells that preferentially produce both IL-4 and IFN-γ, neonatal NKT cells preferentially produce IL-4 after polyclonal activation. Addition of type 2 dendritic cells (DC2) enhances the development of neonatal NKT cells into IL-4+IFN-γ− NKT2 cells, whereas addition of type 1 dendritic cells (DC1) induces polarization towards IL-4−IFN-γ+ NKT1 cells. Adult NKT cells display limited plasticity for polarization induced by DC1 or DC2. Thus, newly generated NKT cells may possess the potent ability to develop into IL-4+IFN-γ− NKT2 cells in response to appropriate stimuli and may thereafter acquire the tendency to produce both IL-4 and IFN-γ.
PMCID: PMC2193332  PMID: 11369793
cord blood; interleukin 4; interferon γ; autoimmune diseases; graft versus host disease
9.  Hepatitis C: viral and host factors associated with non-response to pegylated interferon plus ribavirin 
Liver International  2010;30(9):1259-1269.
Treatment for chronic hepatitis C virus (HCV) infection has evolved considerably in the last years. The standard of care (SOC) for HCV infection consists in the combination of pegylated interferon (PEG-IFN) plus ribavirin. However, it only induces a sustained virological response (SVR) in half of genotype 1-infected patients. Several viral and host factors have been associated with non-response: steatosis, obesity, insulin resistance, age, male sex, ethnicity and genotypes. Many studies have demonstrated that in non-responders, some interferon-stimulated genes were upregulated before treatment. Those findings associated to clinical, biochemical and histological data may help detect responders before starting any treatment. This is a very important issue because the standard treatment is physically and economically demanding. The future of HCV treatment would probably consist in the addition of specifically targeted antiviral therapy for HCV such as protease and/or polymerase inhibitors to the SOC. In genotype 1 patients, very promising results have been reported when the protease inhibitor telaprevir or boceprevir is added to the SOC. It increases the SVR rates from approximately 50% (PEG-IFN plus ribavirin) to 70% (for patients treated with a combination of PEG-IFN plus ribavirin plus telaprevir). Different elements are associated with non-response: (i) viral factors, (ii) host factors and (iii) molecular mechanisms induced by HCV proteins to inhibit the IFN signalling pathway. The goal of this review is to present the mechanisms of non-response, to overcome it and to identify factors that can help to predict the response to anti-HCV therapy.
doi:10.1111/j.1478-3231.2010.02283.x
PMCID: PMC3071938  PMID: 20633102
antiviral; boceprevir; immunity; interferon-stimulated genes; pegylated-interferon; polymerase inhibitors; protease inhibitors; STAT-C; sustained virological response; telaprevir

Results 1-9 (9)