Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  HIV-Nef and ADAM17-Containing Plasma Extracellular Vesicles Induce and Correlate with Immune Pathogenesis in Chronic HIV Infection 
EBioMedicine  2016;6:103-113.
Antiretroviral therapy (ART) efficiently suppresses HIV replication but immune activation and low CD4 T cell counts often persist. The underlying mechanism of this ART-resistant pathogenesis is not clear. We observed that levels of plasma extracellular vesicles (pEV) are strongly elevated in HIV infection and do not decline during ART. Surprisingly, these vesicles contained the viral accessory proteins Nef and Vpu, which are assumed to be not expressed under efficient ART, as well as pro-inflammatory effectors, including activated ADAM17. HIV pEV were characterized by the presence of activated αvβ3 and absence of CD81 and Tsg101. Correlating with immune activation, peripheral monocytes ingested large amounts of pEV, giving rise to an increased population of CD1c+ CD14+ cells that secreted inflammatory cytokines. Importantly, the pro-inflammatory content, particularly ADAM17 activity, correlated with low T cell counts. Preliminary evidence suggested that HIV pEV derived from peripheral mononuclear cells and from an unknown myeloid cell population. In summary we propose an important role of pro-inflammatory pEV in chronic HIV infection due to ongoing viral Nef activity.
•Viremic and non-viremic HIV patients harbor high levels of plasma extracellular vesicles.•Besides inflammatory factors they contain Nef and Vpu, hinting at ongoing viral activity despite efficient ART.•The level of Nef vesicles correlates with immunactivation and low CD4 levels in chronic HIV infection.
Lee et al. found high levels of extracellular vesicles in plasma (pEV) in HIV infection that did not decline under treatment and analyzed a possible correlation with HIV pathogenesis. The pEV contained inflammatory factors and HIV proteins. This was unexpected as viral replication is efficiently suppressed by treatment. The pEV content and viral proteins correlated stringently with symptoms of chronic HIV disease, including low T cell count and increased inflammation. Analyzing the cytokine pattern of HIV pEV it seemed that they were secreted by a so far unknown cell compartment. Suppressing pEV secretion may greatly improve the treatment of chronic HIV infection.
PMCID: PMC4856776  PMID: 27211553
Extracellular vesicles; HIV; Nef; ADAM17; Vpu; HIV reservoir; Chronic HIV infection
2.  Human Adenovirus-Specific γ/δ and CD8+ T Cells Generated by T-Cell Receptor Transfection to Treat Adenovirus Infection after Allogeneic Stem Cell Transplantation 
PLoS ONE  2014;9(10):e109944.
Human adenovirus infection is life threatening after allogeneic haematopoietic stem cell transplantation (HSCT). Immunotherapy with donor-derived adenovirus-specific T cells is promising; however, 20% of all donors lack adenovirus-specific T cells. To overcome this, we transfected α/β T cells with mRNA encoding a T-cell receptor (TCR) specific for the HLA-A*0101-restricted peptide LTDLGQNLLY from the adenovirus hexon protein. Furthermore, since allo-reactive endogenous TCR of donor T lymphocytes would induce graft-versus-host disease (GvHD) in a mismatched patient, we transferred the TCR into γ/δ T cells, which are not allo-reactive. TCR-transfected γ/δ T cells secreted low quantities of cytokines after antigen-specific stimulation, which were increased dramatically after co-transfection of CD8α-encoding mRNA. In direct comparison with TCR-transfected α/β T cells, TCR-CD8α-co-transfected γ/δ T cells produced more tumor necrosis factor (TNF), and lysed peptide-loaded target cells as efficiently. Most importantly, TCR-transfected α/β T cells and TCR-CD8α-co-transfected γ/δ T cells efficiently lysed adenovirus-infected target cells. We show here, for the first time, that not only α/β T cells but also γ/δ T cells can be equipped with an adenovirus specificity by TCR-RNA electroporation. Thus, our strategy offers a new means for the immunotherapy of adenovirus infection after allogeneic HSCT.
PMCID: PMC4188623  PMID: 25289687
3.  The Modular Nature of Dendritic Cell Responses to Commensal and Pathogenic Fungi 
PLoS ONE  2012;7(8):e42430.
The type of adaptive immune response following host-fungi interaction is largely determined at the level of the antigen-presenting cells, and in particular by dendritic cells (DCs). The extent to which transcriptional regulatory events determine the decision making process in DCs is still an open question. By applying the highly structured DC-ATLAS pathways to analyze DC responses, we classified the various stimuli by revealing the modular nature of the different transcriptional programs governing the recognition of either pathogenic or commensal fungi. Through comparison of the network parts affected by DC stimulation with fungal cells and purified single agonists, we could determine the contribution of each receptor during the recognition process. We observed that initial recognition of a fungus creates a temporal window during which the simultaneous recruitment of cell surface receptors can intensify, complement and sustain the DC activation process. The breakdown of the response to whole live cells, through the purified components, showed how the response to invading fungi uses a set of specific modules. We find that at the start of fungal recognition, DCs rapidly initiate the activation process. Ligand recognition is further enhanced by over-expression of the receptor genes, with a significant correspondence between gene expression and protein levels and function. Then a marked decrease in the receptor levels follows, suggesting that at this moment the DC commits to a specific fate. Overall our pathway based studies show that the temporal window of the fungal recognition process depends on the availability of ligands and is different for pathogens and commensals. Modular analysis of receptor and signalling-adaptor expression changes, in the early phase of pathogen recognition, is a valuable tool for rapid and efficient dissection of the pathogen derived components that determine the phenotype of the DC and thereby the type of immune response initiated.
PMCID: PMC3411757  PMID: 22879980
4.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
PMCID: PMC3000836  PMID: 21092113

Results 1-4 (4)