Search tips
Search criteria

Results 1-7 (7)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions 
Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.
PMCID: PMC3703528  PMID: 23847770
Brucella; TIR domain; Btp1/BtpA; TLR; DC; NF-κB
2.  In search of Brucella abortus Type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system 
Cellular microbiology  2011;13(8):1261-1274.
Type IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells. Brucella T4SS (VirB) is essential to subvert lysosome fusion and to create an organelle permissive for replication. One possible role for VirB is to translocate effector proteins that modulate host cellular functions for the biogenesis of the replicative organelle. We hypothesized that proteins with eukaryotic domains or protein-protein interaction domains, among others, would be good candidates for modulation of host cell functions. To identify these candidates, we performed an in silico screen looking for proteins with distinctive features. Translocation of 84 potential substrates was assayed using adenylate cyclase reporter. By this approach, we identified six proteins that are delivered to the eukaryotic cytoplasm upon infection of macrophage-like cells and we could determine that four of them, encoded by genes BAB1_1043, BAB1_2005, BAB1_1275 and BAB2_0123, require a functional T4SS for their delivery. We confirmed VirB-mediated translocation of one of the substrates by immunofluorescence confocal microscopy, and we found that the N-terminal 25 amino acids are required for its delivery into cells.
PMCID: PMC3139020  PMID: 21707904
3.  Coxiella burnetii, the Agent of Q Fever, Replicates within Trophoblasts and Induces a Unique Transcriptional Response 
PLoS ONE  2010;5(12):e15315.
Q fever is a zoonosis caused by Coxiella burnetii, an obligate intracellular bacterium typically found in myeloid cells. The infection is a source of severe obstetrical complications in humans and cattle and can undergo chronic evolution in a minority of pregnant women. Because C. burnetii is found in the placentas of aborted fetuses, we investigated the possibility that it could infect trophoblasts. Here, we show that C. burnetii infected and replicated in BeWo trophoblasts within phagolysosomes. Using pangenomic microarrays, we found that C. burnetii induced a specific transcriptomic program. This program was associated with the modulation of inflammatory responses that were shared with inflammatory agonists, such as TNF, and more specific responses involving genes related to pregnancy development, including EGR-1 and NDGR1. In addition, C. burnetii stimulated gene networks organized around the IL-6 and IL-13 pathways, which both modulate STAT3. Taken together, these results revealed that trophoblasts represent a protective niche for C. burnetii. The activation program induced by C. burnetii in trophoblasts may allow bacterial replication but seems unable to interfere with the development of normal pregnancy. Such pathophysiologocal processes should require the activation of immune placental cells associated with trophoblasts.
PMCID: PMC3001886  PMID: 21179488
4.  The Brucella abortus Phosphoglycerate Kinase Mutant Is Highly Attenuated and Induces Protection Superior to That of Vaccine Strain 19 in Immunocompromised and Immunocompetent Mice ▿  
Infection and Immunity  2010;78(5):2283-2291.
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that can function as virulence factors to better understand the host-pathogen interplay. Herein, we identified the gene encoding the phosphoglycerate kinase (PGK) of B. abortus strain 2308. To test the role of PGK in Brucella pathogenesis, a pgk deletion mutant was constructed. Replacement of the wild-type pgk by recombination was demonstrated by Southern and Western blot analyses. The B. abortus Δpgk mutant strain exhibited extreme attenuation in bone marrow-derived macrophages and in vivo in BALB/c, C57BL/6, 129/Sv, and interferon regulatory factor-1 knockout (IRF-1 KO) mice. Additionally, at 24 h postinfection the Δpgk mutant was not found within the same endoplasmic reticulum-derived compartment as the wild-type bacteria, but, instead, over 60% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP1. Furthermore, the B. abortus Δpgk deletion mutant was used as a live vaccine. Challenge experiments revealed that the Δpgk mutant strain induced protective immunity in 129/Sv or IRF-1 KO mice that was superior to the protection conferred by commercial strain 19 or RB51. Finally, the results shown here demonstrated that Brucella PGK is critical for full bacterial virulence and that a Δpgk mutant may serve as a potential vaccine candidate in future studies.
PMCID: PMC2863508  PMID: 20194591
5.  The Glyceraldehyde-3-Phosphate Dehydrogenase and the Small GTPase Rab 2 Are Crucial for Brucella Replication 
PLoS Pathogens  2009;5(6):e1000487.
The intracellular pathogen Brucella abortus survives and replicates inside host cells within an endoplasmic reticulum (ER)-derived replicative organelle named the “Brucella-containing vacuole” (BCV). Here, we developed a subcellular fractionation method to isolate BCVs and characterize for the first time the protein composition of its replicative niche. After identification of BCV membrane proteins by 2 dimensional (2D) gel electrophoresis and mass spectrometry, we focused on two eukaryotic proteins: the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 recruited to the vacuolar membrane of Brucella. These proteins were previously described to localize on vesicular and tubular clusters (VTC) and to regulate the VTC membrane traffic between the endoplasmic reticulum (ER) and the Golgi. Inhibition of either GAPDH or Rab 2 expression by small interfering RNA strongly inhibited B. abortus replication. Consistent with this result, inhibition of other partners of GAPDH and Rab 2, such as COPI and PKC ι, reduced B. abortus replication. Furthermore, blockage of Rab 2 GTPase in a GDP-locked form also inhibited B. abortus replication. Bacteria did not fuse with the ER and instead remained in lysosomal-associated membrane vacuoles. These results reveal an essential role for GAPDH and the small GTPase Rab 2 in B. abortus virulence within host cells.
Author Summary
A key determinant for intracellular pathogenic bacteria to ensure their virulence within host cells is their ability to bypass the endocytic pathway and to reach a safe replication niche. Brucella bacteria reach the endoplasmic reticulum (ER) to create their replicating niche called the Brucella-containing vacuole (BCV). The ER is a suitable strategic place for pathogenic Brucella. Bacteria can be hidden from host cell defences to persist within the host, and can take advantage of the membrane reservoir delivered by the ER to replicate. Interactions between BCV and the ER lead to the presence of ER proteins on the BCV membrane. Currently, no other proteins (eukaryotic or prokaryotic) have yet been associated with the BCV membrane. Here we show that non-ER related proteins are also present on the BCV membrane, in particular, the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the small GTPase Rab 2 known to be located on secretory vesicles that traffic between the ER and the Golgi apparatus. GAPDH and the small GTPase Rab 2 are involved in Brucella replication at late post-infection. Similarly, integrity of secretory vesicle trafficking is also necessary for Brucella replication. Here, we show that recruitment of the two eukaryotic proteins GAPDH and Rab 2 on BCV membranes is necessary for the establishment of the replicative niche by sustaining interactions between the ER and secretory membrane vesicles.
PMCID: PMC2695806  PMID: 19557163
6.  Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1 
PLoS Pathogens  2008;4(2):e21.
Brucella is an intracellular pathogen able to persist for long periods of time within the host and establish a chronic disease. We show that soon after Brucella inoculation in intestinal loops, dendritic cells from ileal Peyer's patches become infected and constitute a cell target for this pathogen. In vitro, we found that Brucella replicates within dendritic cells and hinders their functional activation. In addition, we identified a new Brucella protein Btp1, which down-modulates maturation of infected dendritic cells by interfering with the TLR2 signaling pathway. These results show that intracellular Brucella is able to control dendritic cell function, which may have important consequences in the development of chronic brucellosis.
Author Summary
A key determinant for intracellular pathogenic bacteria to induce infectious diseases is their ability to avoid recognition by the host immune system. Although most microorganisms internalized by host cells are efficiently cleared, Brucella behave as a Trojan horse causing a zoonosis called brucellosis that affects both humans and animals. Here we show that pathogenic Brucella are able to target host cell defense mechanisms by controlling the function of the sentinels of the immune system, the dendritic cells. In particular, the Brucella TIR-containing protein (Btp1) targets the Toll-like receptor 2 activation pathway, which is a major host response system involved in bacterial recognition. Btp1 is involved in the inhibition of dendritic cell maturation. The direct consequence is a control of inflammatory cytokine secretion and antigen presentation to T lymphocytes. These bacterial proteins are not specific for Brucella and have been identified in other pathogens and may be part of a general virulence mechanism used by several intracellular pathogens to induce disease.
PMCID: PMC2233671  PMID: 18266466
7.  The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche▿  
Infection and Immunity  2006;74(12):6965-6972.
The facultative intracellular pathogen Salmonella enterica causes a variety of diseases, including gastroenteritis and typhoid fever. Inside epithelial cells, Salmonella replicates in vacuoles, which localize in the perinuclear area in close proximity to the Golgi apparatus. Among the effector proteins translocated by the Salmonella pathogenicity island 2-encoded type III secretion system, SifA and SseG have been shown necessary but not sufficient to ensure the intracellular positioning of Salmonella vacuoles. Hence, we have investigated the involvement of other secreted effector proteins in this process. Here we show that SseF interacts functionally and physically with SseG but not SifA and is also required for the perinuclear localization of Salmonella vacuoles. The observations show that the intracellular positioning of Salmonella vacuoles is a complex phenomenon resulting from the combined action of several effector proteins.
PMCID: PMC1698088  PMID: 17015457

Results 1-7 (7)