Search tips
Search criteria

Results 1-25 (98)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Endocytic Crosstalk: Cavins, Caveolins, and Caveolae Regulate Clathrin-Independent Endocytosis 
PLoS Biology  2014;12(4):e1001832.
Caveolar proteins and caveolae negatively regulate a second clathrin-independent endocytic CLIC/GEEC pathway; caveolin-1 affects membrane diffusion properties of raft-associated CLIC cargo, and the scaffolding domain of caveolin-1 is required and sufficient for endocytic inhibition.
Several studies have suggested crosstalk between different clathrin-independent endocytic pathways. However, the molecular mechanisms and functional relevance of these interactions are unclear. Caveolins and cavins are crucial components of caveolae, specialized microdomains that also constitute an endocytic route. Here we show that specific caveolar proteins are independently acting negative regulators of clathrin-independent endocytosis. Cavin-1 and Cavin-3, but not Cavin-2 or Cavin-4, are potent inhibitors of the clathrin-independent carriers/GPI-AP enriched early endosomal compartment (CLIC/GEEC) endocytic pathway, in a process independent of caveola formation. Caveolin-1 (CAV1) and CAV3 also inhibit the CLIC/GEEC pathway upon over-expression. Expression of caveolar protein leads to reduction in formation of early CLIC/GEEC carriers, as detected by quantitative electron microscopy analysis. Furthermore, the CLIC/GEEC pathway is upregulated in cells lacking CAV1/Cavin-1 or with reduced expression of Cavin-1 and Cavin-3. Inhibition by caveolins can be mimicked by the isolated caveolin scaffolding domain and is associated with perturbed diffusion of lipid microdomain components, as revealed by fluorescence recovery after photobleaching (FRAP) studies. In the absence of cavins (and caveolae) CAV1 is itself endocytosed preferentially through the CLIC/GEEC pathway, but the pathway loses polarization and sorting attributes with consequences for membrane dynamics and endocytic polarization in migrating cells and adult muscle tissue. We also found that noncaveolar Cavin-1 can act as a modulator for the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. This work provides new insights into the regulation of noncaveolar clathrin-independent endocytosis by specific caveolar proteins, illustrating multiple levels of crosstalk between these pathways. We show for the first time a role for specific cavins in regulating the CLIC/GEEC pathway, provide a new tool to study this pathway, identify caveola-independent functions of the cavins and propose a novel mechanism for inhibition of the CLIC/GEEC pathway by caveolin.
Author Summary
Endocytosis is the process that allows cells to take up molecules from the environment. Several endocytic pathways exist in mammalian cells. While the best understood endocytic pathway uses clathrin, recent years have seen a great increase in our understanding of clathrin-independent endocytic pathways. Here we characterize the crosstalk between caveolae, flask-shaped specialized microdomains present at the plasma membrane, and a second clathrin-independent pathway, the CLIC/GEEC Cdc42-regulated endocytic pathway. These pathways are segregated in migrating cells with caveolae at the rear and CLIC/GEEC endocytosis at the leading edge. Here we find that specific caveolar proteins, caveolins and cavins, can also negatively regulate the CLIC/GEEC pathway. With the help of several techniques, including quantitative electron microscopy analysis and real-time live-cell imaging, we demonstrate that expression of caveolar proteins affects early carrier formation, causes cellular lipid changes, and changes the activity of the key regulator of the CLIC/GEEC pathway, Cdc42. The functional consequences of loss of caveolar proteins on the CLIC/GEEC pathway included inhibition of polarized cell migration and increased endocytosis in tissue explants.
PMCID: PMC3979662  PMID: 24714042
2.  The RhoD to centrosomal duplication 
Small GTPases  2013;4(2):116-122.
The main functional roles attributed to the centrosome, the major microtubule organizing center (MTOC) of metazoans, are related to cell locomotion, sensory perception and division. The role of vesicular trafficking in the regulation of the centrosome cycle has been largely unexplored. Recently, however, several studies have indicated the involvement of molecules and/or complexes of the trafficking routes in centrosome positioning, duplication and regulation. Functional screens have revealed communication between the outer nuclear envelope, the Golgi apparatus, the endosomal recycling compartment and centrosomes, while other studies underline the involvement of the ESCRT complex proteins in centrosome function. In this commentary, we discuss our recent study, which shows the involvement of an endosomal Rho protein, namely RhoD, in centrosome duplication and possible links between the centrosome’s structural and functional integrity to vesicular trafficking.
PMCID: PMC3747252  PMID: 23422264
Rho GTPase; RhoD; centrosome; recycling endosome; trafficking
3.  Abnormal Nuclear Pore Formation Triggers Apoptosis in the Intestinal Epithelium of elys-Deficient Zebrafish 
Gastroenterology  2008;136(3):902-911.
Background & Aims
Zebrafish mutants generated by ethylnitrosourea (ENU)-mutagenesis provide a powerful tool for dissecting the genetic regulation of developmental processes, including organogenesis. One zebrafish mutant, “flotte lotte” (flo), displays striking defects in intestinal, liver, pancreas and eye formation at 78hpf. In this study we sought to identify the underlying mutated gene in flo and link the genetic lesion to its phenotype.
Positional cloning was employed to map the flo mutation. Sub-cellular characterization of flo embryos was achieved using histology, immunocytochemistry, bromodeoxyuridine incorporation analysis, confocal and electron microscopy.
The molecular lesion in flo is a nonsense mutation in the elys (embryonic large molecule derived from yolk sac) gene which encodes a severely truncated protein lacking the Elys C-terminal AT-hook DNA binding domain. Recently, ELYS has been shown to play a critical, and hitherto unsuspected, role in nuclear pore assembly. Though elys mRNA is expressed broadly during early zebrafish development, widespread early defects in flo are circumvented by the persistence of maternally-expressed elys mRNA until 24hpf. From 72hpf, elys mRNA expression is restricted to proliferating tissues, including the intestinal epithelium, pancreas, liver and eye. Cells in these tissues display disrupted nuclear pore formation; ultimately intestinal epithelial cells undergo apoptosis.
Our results demonstrate that Elys regulates digestive organ formation.
PMCID: PMC3804769  PMID: 19073184
4.  PTRF/Cavin-1 decreases prostate cancer angiogenesis and lymphangiogenesis 
Oncotarget  2013;4(10):1844-1855.
Caveolae are specialized plasma membrane subdomains implicated in cellular functions such as migration, signalling and trafficking. Caveolin-1 and polymerase I and transcript release factor (PTRF)/cavin-1 are essential for caveola formation. Caveolin-1 is overexpressed and secreted in prostate tumors and promotes aggressiveness and angiogenesis. In contrast, a lack of PTRF expression is reported in prostate cancer, and ectopic PTRF expression in prostate cancer cells inhibits tumor growth and metastasis. We experimentally manipulated PTRF expression in three prostate cancer cell lines, namely the caveolin-1 positive cells PC3 and DU145 and the caveolin-1-negative LNCaP cells, to evaluate angiogenesis- and lymphangiogenesis-regulating functions of PTRF. We show that the conditioned medium of PTRF-expressing prostate cancer cells decreases ECs proliferation, migration and differentiation in vitro and ex vivo. This can occur independently from caveolin-1 expression and secretion or caveola formation, since the anti-angiogenic effects of PTRF were detected in caveolin-1-negative LNCaP cells. Additionally, PTRF expression in PC3 cells significantly decreased blood and lymphatic vessel densities in orthotopic tumors in mice. Our results suggest that the absence of PTRF in prostate cancer cells contributes significantly to tumour progression and metastasis by promoting the angiogenesis and lymphangiogenesis potential of the cancer cells, and this could be exploited for therapy.
PMCID: PMC3858569  PMID: 24123650
PTRF; Caveolae; Angiogenesis; Lymphangiogenesis; Prostate Cancer
5.  Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell 
Diabetologia  2013;56:2629-2637.
In dispersed single beta cells the response of each cell to glucose is heterogeneous. In contrast, within an islet, cell-to-cell communication leads to glucose inducing a more homogeneous response. For example, increases in NAD(P)H and calcium are relatively uniform across the cells of the islet. These data suggest that secretion of insulin from single beta cells within an islet should also be relatively homogeneous. The aim of this study was to test this hypothesis by determining the glucose dependence of single-cell insulin responses within an islet.
Two-photon microscopy was used to detect the glucose-induced fusion of single insulin granules within beta cells in intact mouse islets.
First, we validated our assay and showed that the measures of insulin secretion from whole islets could be explained by the time course and numbers of granule fusion events observed. Subsequent analysis of the patterns of granule fusion showed that cell recruitment is a significant factor, accounting for a fourfold increase from 3 to 20 mmol/l glucose. However, the major factor is the regulation of the numbers of granule fusion events within each cell, which increase ninefold over the range of 3 to 20 mmol/l glucose. Further analysis showed that two types of granule fusion event occur: ‘full fusion’ and ‘kiss and run’. We show that the relative frequency of each type of fusion is independent of glucose concentration and is therefore not a factor in the control of insulin secretion.
Within an islet, glucose exerts its main effect through increasing the numbers of insulin granule fusion events within a cell.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-013-3019-5) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
PMCID: PMC3825531  PMID: 23995471
Insulin; Islet; Secretion
6.  Structure-based Reassessment of the Caveolin Signaling Model: Do Caveolae Regulate Signaling Through Caveolin-Protein Interactions? 
Developmental cell  2012;23(1):11-20.
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: In the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched amongst caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.
PMCID: PMC3427029  PMID: 22814599
7.  Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission 
Molecular and Cellular Biology  2013;33(2):237-251.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.
PMCID: PMC3554123  PMID: 23129805
8.  Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation 
The Journal of Cell Biology  2012;199(3):425-435.
Phosphocaveolin-1 regulates a positive feedback loop that responds to mechanical stress to induce caveola biogenesis by relieving Egr1 transcriptional inhibition of caveolin-1 and cavin-1.
Caveolin-1 (Cav1) is an essential component of caveolae whose Src kinase-dependent phosphorylation on tyrosine 14 (Y14) is associated with regulation of focal adhesion dynamics. However, the relationship between these disparate functions remains to be elucidated. Caveola biogenesis requires expression of both Cav1 and cavin-1, but Cav1Y14 phosphorylation is dispensable. In this paper, we show that Cav1 tyrosine phosphorylation induces caveola biogenesis via actin-dependent mechanotransduction and inactivation of the Egr1 (early growth response-1) transcription factor, relieving inhibition of endogenous Cav1 and cavin-1 genes. Cav1 phosphorylation reduces Egr1 binding to Cav1 and cavin-1 promoters and stimulates their activity. In MDA-231 breast carcinoma cells that express elevated levels of Cav1 and caveolae, Egr1 regulated Cav1, and cavin-1 promoter activity was dependent on actin, Cav1, Src, and Rho-associated kinase as well as downstream protein kinase C (PKC) signaling. pCav1 is therefore a mechanotransducer that acts via PKC to relieve Egr1 transcriptional inhibition of Cav1 and cavin-1, defining a novel feedback regulatory loop to regulate caveola biogenesis.
PMCID: PMC3483133  PMID: 23091071
9.  Ancient ubiquitous protein-1 mediates sterol-induced ubiquitination of 3-hydroxy-3-methylglutaryl CoA reductase in lipid droplet–associated endoplasmic reticulum membranes 
Molecular Biology of the Cell  2013;24(3):169-183.
The cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase is subjected to sterol-accelerated degradation from endoplasmic reticulum membranes. This study shows that reductase degradation is mediated by the lipid droplet–associated protein ancient ubiquitous protein-1, which facilitates binding of the E2 Ubc7 to the E3 ligases, gp78 and Trc8, that initiate reductase ubiquitination.
Sterol-induced binding to Insigs in endoplasmic reticulum (ER) membranes triggers ubiquitination of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl CoA reductase. This ubiquitination, which is mediated by Insig-associated ubiquitin ligases gp78 and Trc8, is obligatory for extraction of reductase from lipid droplet–associated ER membranes into the cytosol for proteasome-mediated, ER-associated degradation (ERAD). In this study, we identify lipid droplet–associated, ancient, ubiquitous protein-1 (Aup1) as one of several proteins that copurify with gp78. RNA interference (RNAi) studies show that Aup1 recruits the ubiquitin-conjugating enzyme Ubc7 to lipid droplets and facilitates its binding to both gp78 and Trc8. The functional significance of these interactions is revealed by the observation that RNAi-mediated knockdown of Aup1 blunts sterol-accelerated ubiquitination of reductase, which appears to occur in lipid droplet–associated membranes and subsequent ERAD of the enzyme. In addition, Aup1 knockdown inhibits ERAD of Insig-1, another substrate for gp78, as well as that of membrane-bound precursor forms of sterol-regulatory, element-binding protein-1 and -2, transcription factors that modulate expression of genes encoding enzymes required for cholesterol synthesis. Considered together, these findings not only implicate a role for Aup1 in maintenance of intracellular cholesterol homeostasis, but they also highlight the close connections among ERAD, lipid droplets, and lipid droplet–associated proteins.
PMCID: PMC3564538  PMID: 23223569
10.  Mutations in mouse Ift144 model the craniofacial, limb and rib defects in skeletal ciliopathies 
Human Molecular Genetics  2012;21(8):1808-1823.
Mutations in components of the intraflagellar transport (IFT) machinery required for assembly and function of the primary cilium cause a subset of human ciliopathies characterized primarily by skeletal dysplasia. Recently, mutations in the IFT-A gene IFT144 have been described in patients with Sensenbrenner and Jeune syndromes, which are associated with short ribs and limbs, polydactyly and craniofacial defects. Here, we describe an N-ethyl-N-nitrosourea-derived mouse mutant with a hypomorphic missense mutation in the Ift144 gene. The mutant twinkle-toes (Ift144twt) phenocopies a number of the skeletal and craniofacial anomalies seen in patients with human skeletal ciliopathies. Like other IFT-A mouse mutants, Ift144 mutant embryos display a generalized ligand-independent expansion of hedgehog (Hh) signalling, in spite of defective ciliogenesis and an attenuation of the ability of mutant cells to respond to upstream stimulation of the pathway. This enhanced Hh signalling is consistent with cleft palate and polydactyly phenotypes in the Ift144twt mutant, although extensive rib branching, fusion and truncation phenotypes correlate with defects in early somite patterning and may reflect contributions from multiple signalling pathways. Analysis of embryos harbouring a second allele of Ift144 which represents a functional null, revealed a dose-dependent effect on limb outgrowth consistent with the short-limb phenotypes characteristic of these ciliopathies. This allelic series of mouse mutants provides a unique opportunity to uncover the underlying mechanistic basis of this intriguing subset of ciliopathies.
PMCID: PMC3313797  PMID: 22228095
11.  The HSP90 inhibitor geldanamycin perturbs endosomal structure and drives recycling ErbB2 and transferrin to modified MVBs/lysosomal compartments 
Molecular Biology of the Cell  2013;24(2):129-144.
The ErbB2 receptor is a validated cancer target whose internalization and trafficking remain poorly understood. The authors propose that ErbB2 internalization upon geldanamycin (GA) occurs predominantly via clathrin-mediated endocytosis and that GA affects endosomal structure and sorting, forcing recycling cargoes toward mixed endo/lysosomal compartments, irrespective of their HSP90 interaction.
The ErbB2 receptor is a clinically validated cancer target whose internalization and trafficking mechanisms remain poorly understood. HSP90 inhibitors, such as geldanamycin (GA), have been developed to target the receptor to degradation or to modulate downstream signaling. Despite intense investigations, the entry route and postendocytic sorting of ErbB2 upon GA stimulation have remained controversial. We report that ErbB2 levels inversely impact cell clathrin-mediated endocytosis (CME) capacity. Indeed, the high levels of the receptor are responsible for its own low internalization rate. GA treatment does not directly modulate ErbB2 CME rate but it affects ErbB2 recycling fate, routing the receptor to modified multivesicular endosomes (MVBs) and lysosomal compartments, by perturbing early/recycling endosome structure and sorting capacity. This activity occurs irrespective of the cargo interaction with HSP90, as both ErbB2 and the constitutively recycled, HSP90-independent, transferrin receptor are found within modified endosomes, and within aberrant, elongated recycling tubules, leading to modified MVBs/lysosomes. We propose that GA, as part of its anticancer activity, perturbs early/recycling endosome sorting, routing recycling cargoes toward mixed endosomal compartments.
PMCID: PMC3541960  PMID: 23154999
12.  Revisiting caveolin trafficking: the end of the caveosome 
The Journal of Cell Biology  2010;191(3):439-441.
In this issue, a study by Hayer et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201003086) provides insights into the trafficking of caveolins, the major membrane proteins of caveolae. As well as providing evidence for ubiquitin-mediated endosomal sorting and degradation of caveolin in multivesicular bodies (MVBs), the new findings question the existence of a unique organelle proposed nine years ago, the caveosome.
PMCID: PMC3003311  PMID: 21041440
14.  Not Just Fat: The Structure and Function of the Lipid Droplet 
Lipid droplets (LDs) are independent organelles that are composed of a lipid ester core and a surface phospholipid monolayer. Recent studies have revealed many new proteins, functions, and phenomena associated with LDs. In addition, a number of diseases related to LDs are beginning to be understood at the molecular level. It is now clear that LDs are not an inert store of excess lipids but are dynamically engaged in various cellular functions, some of which are not directly related to lipid metabolism. Compared to conventional membrane organelles, there are still many uncertainties concerning the molecular architecture of LDs and how each function is placed in a structural context. Recent findings and remaining questions are discussed.
Lipid droplets are small organelles in which a phospholipid monolayer surrounds a lipid ester core. They are not just storage depots but contain various enzymes and may act as platforms for degradation of hydrophobic proteins.
PMCID: PMC3039932  PMID: 21421923
15.  Different Characteristics and Nucleotide Binding Properties of Inosine Monophosphate Dehydrogenase (IMPDH) Isoforms 
PLoS ONE  2012;7(12):e51096.
We recently reported that Inosine Monophosphate Dehydrogenase (IMPDH), a rate-limiting enzyme in de novo guanine nucleotide biosynthesis, clustered into macrostructures in response to decreased nucleotide levels and that there were differences between the IMPDH isoforms, IMPDH1 and IMPDH2. We hypothesised that the Bateman domains, which are present in both isoforms and serve as energy-sensing/allosteric modules in unrelated proteins, would contribute to isoform-specific differences and that mutations situated in and around this domain in IMPDH1 which give rise to retinitis pigmentosa (RP) would compromise regulation. We employed immuno-electron microscopy to investigate the ultrastructure of IMPDH macrostructures and live-cell imaging to follow clustering of an IMPDH2-GFP chimera in real-time. Using a series of IMPDH1/IMPDH2 chimera we demonstrated that the propensity to cluster was conferred by the N-terminal 244 amino acids, which includes the Bateman domain. A protease protection assay suggested isoform-specific purine nucleotide binding characteristics, with ATP protecting IMPDH1 and AMP protecting IMPDH2, via a mechanism involving conformational changes upon nucleotide binding to the Bateman domain without affecting IMPDH catalytic activity. ATP binding to IMPDH1 was confirmed in a nucleotide binding assay. The RP-causing mutation, R224P, abolished ATP binding and nucleotide protection and this correlated with an altered propensity to cluster. Collectively these data demonstrate that (i) the isoforms are differentially regulated by AMP and ATP by a mechanism involving the Bateman domain, (ii) communication occurs between the Bateman and catalytic domains and (iii) the RP-causing mutations compromise such regulation. These findings support the idea that the IMPDH isoforms are subject to distinct regulation and that regulatory defects contribute to human disease.
PMCID: PMC3517587  PMID: 23236438
16.  Multisite phosphorylation of oxysterol-binding protein regulates sterol binding and activation of sphingomyelin synthesis 
Molecular Biology of the Cell  2012;23(18):3624-3635.
Oxysterol-binding protein (OSBP) is involved in endoplasmic reticulum (ER)-Golgi sterol transport, but how its activity is regulated is unknown. OSBP is phosphorylated at multiple sites, two of which regulate sterol binding and interaction with vesicle-associated, membrane protein–associated protein A in the ER. Phosphorylation does not affect phosphatidylinositol 4-phosphate binding, which could serve as a counter-ligand to facilitate sterol release in the Golgi.
The endoplasmic reticulum (ER)-Golgi sterol transfer activity of oxysterol-binding protein (OSBP) regulates sphingomyelin (SM) synthesis, as well as post-Golgi cholesterol efflux pathways. The phosphorylation and ER-Golgi localization of OSBP are correlated, suggesting this modification regulates the directionality and/or specificity of transfer activity. In this paper, we report that phosphorylation on two serine-rich motifs, S381-S391 (site 1) and S192, S195, S200 (site 2), specifically controls OSBP activity at the ER. A phosphomimetic of the SM/cholesterol-sensitive phosphorylation site 1 (OSBP-S5E) had increased in vitro cholesterol and 25-hydroxycholesterol–binding capacity, and cholesterol extraction from liposomes, but reduced transfer activity. Phosphatidylinositol 4-phosphate (PI(4)P) and cholesterol competed for a common binding site on OSBP; however, direct binding of PI(4)P was not affected by site 1 phosphorylation. Individual site 1 and site 2 phosphomutants supported oxysterol activation of SM synthesis in OSBP-deficient CHO cells. However, a double site1/2 mutant (OSBP-S381A/S3D) was deficient in this activity and was constitutively colocalized with vesicle-associated membrane protein–associated protein A (VAP-A) in a collapsed ER network. This study identifies phosphorylation regulation of sterol and VAP-A binding by OSBP in the ER, and PI(4)P as an alternate ligand that could be exchanged for sterol in the Golgi apparatus.
PMCID: PMC3442410  PMID: 22875984
18.  Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes 
Molecular Biology of the Cell  2012;23(10):1826-1837.
Micro lipid droplets (mLDs) form during lipolysis in both primary and cultured adipocytes. Surprisingly, mLDs do not appear to bud from large LDs or require an intact cytoskeleton to form. Insulin and fatty acids trigger fusion and growth of mLDs to reform macroLDs, a process that is microtubule dependent.
Despite the lipolysis–lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ∼30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes.
PMCID: PMC3350548  PMID: 22456503
19.  Autophagosomes contribute to intracellular lipid distribution in enterocytes 
Molecular Biology of the Cell  2014;25(1):118-132.
Delivery of alimentary lipids induces immediate autophagic response in enterocytes. Forming autophagosomes are recruited to the ER membrane, where they capture nascent lipid droplets and later fuse with lysosomes, illustrating for the first time the role of autophagy in neutral-lipid distribution in enterocytes.
Enterocytes, the intestinal absorptive cells, have to deal with massive alimentary lipids upon food consumption. They orchestrate complex lipid-trafficking events that lead to the secretion of triglyceride-rich lipoproteins and/or the intracellular transient storage of lipids as lipid droplets (LDs). LDs originate from the endoplasmic reticulum (ER) membrane and are mainly composed of a triglyceride (TG) and cholesterol-ester core surrounded by a phospholipid and cholesterol monolayer and specific coat proteins. The pivotal role of LDs in cellular lipid homeostasis is clearly established, but processes regulating LD dynamics in enterocytes are poorly understood. Here we show that delivery of alimentary lipid micelles to polarized human enterocytes induces an immediate autophagic response, accompanied by phosphatidylinositol-3-phosphate appearance at the ER membrane. We observe a specific and rapid capture of newly synthesized LD at the ER membrane by nascent autophagosomal structures. By combining pharmacological and genetic approaches, we demonstrate that autophagy is a key player in TG targeting to lysosomes. Our results highlight the yet-unraveled role of autophagy in the regulation of TG distribution, trafficking, and turnover in human enterocytes.
PMCID: PMC3873883  PMID: 24173715
20.  FCH domain only-2 organizes clathrin-coated structures and interacts with Disabled-2 for low-density lipoprotein receptor endocytosis 
Molecular Biology of the Cell  2012;23(7):1330-1342.
The clathrin adaptor Disabled-2 (Dab2) interacts with the F-BAR protein FCH domain only-2 (FCHO2), and this interaction is necessary for Dab2 function when AP2 levels are low. FCHO2 regulates the size of clathrin structures and plays a role in receptor recruitment. Our results indicate that FCHO2 is not essential for coated pit initiation but regulates coated pit size and function.
Clathrin-mediated endocytosis regulates the internalization of many nutrient and signaling receptors. Clathrin and endocytic accessory proteins are recruited to receptors by specific adaptors. The adaptor Disabled-2 (Dab2) recruits its cargoes, including the low-density lipoprotein receptor (LDLR), and mediates endocytosis, even when the major adaptor protein AP2 is depleted. We hypothesized that the accessory proteins normally recruited by AP2 may be recruited by Dab2 if AP2 is absent. We identified one such accessory protein, the F-BAR protein FCH domain only-2 (FCHO2), as a major Dab2-interacting protein. The μ-homology domain (μHD) of FCHO2 binds directly to DPF sequences in Dab2 that also bind AP2. Disrupting the Dab2-FCHO2 interaction inhibited Dab2-mediated LDLR endocytosis in AP2-depleted cells. Depleting FCHO2 reduced the number but increased the size of clathrin structures on the adherent surface of HeLa cells and inhibited LDLR and transferrin receptor clustering. However, LDLR was internalized efficiently by FCHO2-deficient cells when additional time was provided for LDLR to enter the enlarged structures before budding, suggesting that later steps of endocytosis are normal under these conditions. These results indicate FCHO2 regulates the size of clathrin structures, and its interaction with Dab2 is needed for LDLR endocytosis under conditions of low AP2.
PMCID: PMC3315808  PMID: 22323290
21.  EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization 
Molecular Biology of the Cell  2012;23(7):1316-1329.
EH domain-containing 2 (EHD2) specifically and stably associates with caveolae at the plasma membrane and interacts with pacsin2 and cavin1. A loop in the nucleotide-binding domain, together with ATP binding, is required for caveolar localization. EHD2 stabilizes caveolae at the surface to control their dynamics.
Eps15 homology domain–containing 2 (EHD2) belongs to the EHD-containing protein family of dynamin-related ATPases involved in membrane remodeling in the endosomal system. EHD2 dimers oligomerize into rings on highly curved membranes, resulting in stimulation of the intrinsic ATPase activity. In this paper, we report that EHD2 is specifically and stably associated with caveolae at the plasma membrane and not involved in clathrin-mediated endocytosis or endosomal recycling, as previously suggested. EHD2 interacts with pacsin2 and cavin1, and ordered membrane assembly of EHD2 is dependent on cavin1 and caveolar integrity. While the EHD of EHD2 is dispensable for targeting, we identified a loop in the nucleotide-binding domain that, together with ATP binding, is required for caveolar localization. EHD2 was not essential for the formation or shaping of caveolae, but high levels of EHD2 caused distortion and loss of endogenous caveolae. Assembly of EHD2 stabilized and constrained caveolae to the plasma membrane to control turnover, and depletion of EHD2, resulting in endocytic and more dynamic and short-lived caveolae. Thus, following the identification of caveolin and cavins, EHD2 constitutes a third structural component of caveolae involved in controlling the stability and turnover of this organelle.
PMCID: PMC3315815  PMID: 22323287
22.  SNX12 Role in Endosome Membrane Transport 
PLoS ONE  2012;7(6):e38949.
In this paper, we investigated the role of sorting nexin 12 (SNX12) in the endocytic pathway. SNX12 is a member of the PX domain-containing sorting nexin family and shares high homology with SNX3, which plays a central role in the formation of intralumenal vesicles within multivesicular endosomes. We found that SNX12 is expressed at very low levels compared to SNX3. SNX12 is primarily associated with early endosomes and this endosomal localization depends on the binding to 3-phosphoinositides. We find that overexpression of SNX12 prevents the detachment (or maturation) of multivesicular endosomes from early endosomes. This in turn inhibits the degradative pathway from early to late endosomes/lysosomes, much like SNX3 overexpression, without affecting endocytosis, recycling and retrograde transport. In addition, while previous studies showed that Hrs knockdown prevents EGF receptor sorting into multivesicular endosomes, we find that overexpression of SNX12 restores the sorting process in an Hrs knockdown background. Altogether, our data show that despite lower expression level, SNX12 shares redundant functions with SNX3 in the biogenesis of multivesicular endosomes.
PMCID: PMC3376135  PMID: 22719997
23.  Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites 
The Journal of Cell Biology  2011;195(6):953-963.
The lipid droplet–associated protein Fsp27 mediates lipid droplet growth by promoting directional lipid transfer from smaller to larger lipid droplets.
Lipid droplets (LDs) are dynamic cellular organelles that control many biological processes. However, molecular components determining LD growth are poorly understood. Genetic analysis has indicated that Fsp27, an LD-associated protein, is important in controlling LD size and lipid storage in adipocytes. In this paper, we demonstrate that Fsp27 is focally enriched at the LD–LD contacting site (LDCS). Photobleaching revealed the occurrence of lipid exchange between contacted LDs in wild-type adipocytes and Fsp27-overexpressing cells but not Fsp27-deficient adipocytes. Furthermore, live-cell imaging revealed a unique Fsp27-mediated LD growth process involving a directional net lipid transfer from the smaller to larger LDs at LDCSs, which is in accordance with the biophysical analysis of the internal pressure difference between the contacting LD pair. Thus, we have uncovered a novel molecular mechanism of LD growth mediated by Fsp27.
PMCID: PMC3241734  PMID: 22144693
24.  Endosome-to-cytosol transport of viral nucleocapsids 
Nature Cell Biology  2005;7(7):653-664.
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus, they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. The latter step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1 and is regulated by PI3P signaling via the PI3P-binding protein SNX16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PI3P, and by their effectors.
PMCID: PMC3360589  PMID: 15951806
Animals; Biological Transport; physiology; Cattle; Cell Line; Cricetinae; Cytosol; metabolism; ultrastructure; Endosomal Sorting Complexes Required for Transport; Endosomes; metabolism; ultrastructure; Epithelial Cells; virology; Fibroblasts; virology; Hela Cells; Humans; Lysophospholipids; physiology; Membrane Fusion; drug effects; physiology; Microscopy, Electron; Microscopy, Fluorescence; Monoglycerides; Nucleocapsid; metabolism; Phosphatidylinositol Phosphates; physiology; Phosphoproteins; genetics; physiology; RNA, Viral; biosynthesis; metabolism; Signal Transduction; physiology; Sorting Nexins; Time Factors; Transport Vesicles; metabolism; ultrastructure; Vesicular Transport Proteins; genetics; physiology; Vesicular stomatitis Indiana virus; physiology; Virus Replication; genetics
25.  Cholesterol and Fatty Acids Regulate Dynamic Caveolin Trafficking through the Golgi Complex and between the Cell Surface and Lipid BodiesV⃞ 
Molecular Biology of the Cell  2005;16(4):2091-2105.
Caveolins are a crucial component of plasma membrane (PM) caveolae but have also been localized to intracellular compartments, including the Golgi complex and lipid bodies. Mutant caveolins associated with human disease show aberrant trafficking to the PM and Golgi accumulation. We now show that the Golgi pool of mainly newly synthesized protein is detergent-soluble and predominantly in a monomeric state, in contrast to the surface pool. Caveolin at the PM is not recognized by specific caveolin antibodies unless PM cholesterol is depleted. Exit from the Golgi complex of wild-type caveolin-1 or -3, but not vesicular stomatitis virus-G protein, is modulated by changing cellular cholesterol levels. In contrast, a muscular dystrophy-associated mutant of caveolin-3, Cav3P104L, showed increased accumulation in the Golgi complex upon cholesterol treatment. In addition, we demonstrate that in response to fatty acid treatment caveolin can follow a previously undescribed pathway from the PM to lipid bodies and can move from lipid bodies to the PM in response to removal of fatty acids. The results suggest that cholesterol is a rate-limiting component for caveolin trafficking. Changes in caveolin flux through the exocytic pathway can therefore be an indicator of cellular cholesterol and fatty acid levels.
PMCID: PMC1073686  PMID: 15689493

Results 1-25 (98)