PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Phagocytosis of Enterovirus-Infected Pancreatic β-Cells Triggers Innate Immune Responses in Human Dendritic Cells 
Diabetes  2010;59(5):1182-1191.
OBJECTIVE
Type 1 diabetes is a chronic endocrine disorder in which enteroviruses, such as coxsackie B viruses and echoviruses, are possible environmental factors that can trigger or accelerate disease. The development or acceleration of type 1 diabetes depends on the balance between autoreactive effector T-cells and regulatory T-cells. This balance is particularly influenced by dendritic cells (DCs). The goal of this study was to investigate the interaction between enterovirus-infected human pancreatic islets and human DCs.
RESEARCH DESIGN AND METHODS
In vitro phagocytosis of human or porcine primary islets or Min6 mouse insuloma cells by DCs was investigated by flow cytometry and confocal analysis. Subsequent innate DC responses were monitored by quantitative PCR and Western blotting of interferon-stimulated genes (ISGs).
RESULTS
In this study, we show that both mock- and coxsackievirus B3 (CVB3)-infected human and porcine pancreatic islets were efficiently phagocytosed by human monocyte–derived DCs. Phagocytosis of CVB3-infected, but not mock-infected, human and porcine islets resulted in induction of ISGs in DCs, including the retinoic acid–inducible gene (RIG)-I–like helicases (RLHs), RIG-I, and melanoma differentiation–associated gene 5 (Mda5). Studies with murine Min6 insuloma cells, which were also efficiently phagocytosed, revealed that increased ISG expression in DCs upon encountering CVB-infected cells resulted in an antiviral state that protected DCs from subsequent enterovirus infection. The observed innate antiviral responses depended on RNA within the phagocytosed cells, required endosomal acidification, and were type I interferon dependent.
CONCLUSIONS
Human DCs can phagocytose enterovirus-infected pancreatic cells and subsequently induce innate antiviral responses, such as induction of RLHs. These responses may have important consequences for immune homeostasis in vivo and may play a role in the etiology of type 1 diabetes.
doi:10.2337/db09-1071
PMCID: PMC2857898  PMID: 20071599
2.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
Background
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Results
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
Conclusions
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
doi:10.1186/1745-7580-6-10
PMCID: PMC3000836  PMID: 21092113
3.  Maturation of monocyte-derived dendritic cells with Toll-like receptor 3 and 7/8 ligands combined with prostaglandin E2 results in high interleukin-12 production and cell migration 
Cancer Immunology, Immunotherapy   2008;57(11):1589-1597.
Dendritic cells (DC) are professional antigen-presenting cells of the immune system that play a key role in regulating T cell-based immunity. In vivo, the capacity of DC to activate T cells depends on their ability to migrate to the T cell areas of lymph nodes as well as on their maturation state. Depending on their cytokine-secreting profile, DC are able to skew the immune response in a specific direction. In particular, IL-12p70 producing DC drive T cells towards a T helper 1 type response. A serious disadvantage of current clinical grade ex vivo generated monocyte-derived DC is the poor IL-12p70 production. We have investigated the effects of Toll-like receptor (TLR)-mediated maturation on ex vivo generated human monocyte-derived DC. We demonstrate that in contrast to cytokine-matured DC, DC matured with poly(I:C) (TLR3 ligand) and/or R848 (TLR7/8 ligand) are able to produce vast amounts of IL-12p70, but exhibit a reduced migratory capacity. The addition of prostaglandin E2 (PGE2) improved the migratory capacity of TLR-ligand matured DC while maintaining their IL-12p70 production upon T cell encounter. We propose a novel clinical grade maturation protocol in which TLR ligands poly(I:C) and R848 are combined with PGE2 to generate DC with both high migratory capacity and IL-12p70 production upon T cell encounter.
Electronic supplementary material
The online version of this article (doi:10.1007/s00262-008-0489-2) contains supplementary material, which is available to authorized users.
doi:10.1007/s00262-008-0489-2
PMCID: PMC2522299  PMID: 18322684
Immunotherapy; Dendritic cells; Maturation; Cell trafficking; Tumor immunology; Toll-like receptor ligands
4.  Phagocytosis of Picornavirus-Infected Cells Induces an RNA-Dependent Antiviral State in Human Dendritic Cells▿  
Journal of Virology  2008;82(6):2930-2937.
Dendritic cells (DCs) play a central role in instructing antiviral immune responses. DCs, however, can become targeted by different viruses themselves. We recently demonstrated that human DCs can be productively infected with echoviruses (EVs), but not coxsackie B viruses (CVBs), both of which are RNA viruses belonging to the Enterovirus genus of the Picornaviridae family. We now show that phagocytosis of CVB-infected, type I interferon-deficient cells induces an antiviral state in human DCs. Uptake of infected cells increased the expression of the cytoplasmic RNA helicases retinoic acid-inducible gene I and melanoma differentiation-associated gene 5 as well as other interferon-stimulated genes and protected DCs against subsequent infection with EV9. These effects depended on recognition of viral RNA and could be mimicked by exposure to the synthetic double-stranded RNA analogue poly(I:C) but not other Toll-like receptor (TLR) ligands. Blocking endosomal acidification abrogated protection, suggesting a role for TLRs in the acquisition of an antiviral state in DCs. In conclusion, recognition of viral RNA rapidly induces an antiviral state in human DCs. This might provide a mechanism by which DCs protect themselves against viruses when attracted to an environment with ongoing infection.
doi:10.1128/JVI.02376-07
PMCID: PMC2258994  PMID: 18184700
5.  Toll-like receptor 2 controls expansion and function of regulatory T cells 
Journal of Clinical Investigation  2006;116(2):485-494.
Tregs play a central role in the suppression of immune reactions and prevention of autoimmune responses harmful to the host. During acute infection, however, Tregs might hinder effector T cell activity directed toward the elimination of the pathogenic challenge. Pathogen recognition receptors from the TLR family expressed by innate immune cells are crucial for the generation of effective immunity. We have recently shown the CD4+CD25+ Treg subset in TLR2–/– mice to be significantly reduced in number compared with WT littermate control mice, indicating a link between Tregs and TLR2. Here, we report that the TLR2 ligand Pam3Cys, but not LPS (TLR4) or CpG (TLR9), directly acts on purified Tregs in a MyD88-dependent fashion. Moreover, when combined with TCR stimulation, TLR2 triggering augmented Treg proliferation in vitro and in vivo and resulted in a temporal loss of the suppressive Treg phenotype in vitro by directly affecting Tregs. Importantly, WT Tregs adoptively transferred into TLR2–/– mice were neutralized by systemic administration of TLR2 ligand during the acute phase of a Candida albicans infection, resulting in a 100-fold reduced C. albicans outgrowth. This demonstrates that in vivo TLR2 also controls the function of Tregs and establishes a direct link between TLRs and the control of immune responses through Tregs.
doi:10.1172/JCI25439
PMCID: PMC1332026  PMID: 16424940

Results 1-5 (5)