Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  Extracellular Localization of the Diterpene Sclareol in Clary Sage (Salvia sclarea L., Lamiaceae) 
PLoS ONE  2012;7(10):e48253.
Sclareol is a high-value natural product obtained by solid/liquid extraction of clary sage (Salvia sclarea L.) inflorescences. Because processes of excretion and accumulation of this labdane diterpene are unknown, the aim of this work was to gain knowledge on its sites of accumulation in planta. Samples were collected in natura or during different steps of the industrial process of extraction (steam distillation and solid/liquid extraction). Samples were then analysed with a combination of complementary analytical techniques (gas chromatography coupled to a mass spectrometer, polarized light microscopy, environmental scanning electron microscopy, two-photon fluorescence microscopy, second harmonic generation microscopy). According to the literature, it is hypothesized that sclareol is localized in oil pockets of secretory trichomes. This study demonstrates that this is not the case and that sclareol accumulates in a crystalline epicuticular form, mostly on calyces.
PMCID: PMC3484996  PMID: 23133579
2.  Lavender inflorescence 
Plant Signaling & Behavior  2010;5(6):749-751.
We analyzed VOC composition of complete inflorescences and single flowers of lavender during the flowering period. Our analyses, focused on the 20 most abundant terpenes, showed that three groups of components could be separated according to their patterns of variation during inflorescence ontogeny. These three groups were associated with three developmental stages: flower in bud, flower in bloom and faded flower. The expression of two terpene synthases (TPS) was followed using qPCR during inflorescence ontogeny. A comparison of these chemical and molecular analyses suggested that VOC production in lavender spike is mainly regulated at the transcriptional level. These results highlighted that lavender could be a model plant for future investigations on terpene biosynthesis and regulation, and could be used to explore the functions of terpene metabolites.
PMCID: PMC3001579  PMID: 20418661
chemical ecology; floral scent; flower ontogeny; lavender; terpenes; terpene synthase; volatile organic compound
3.  Production and Emission of Volatile Compounds by Petal Cells 
Plant Signaling & Behavior  2007;2(6):525-526.
We localized the tissues and cells that contribute to scent biosynthesis in scented and non-scented Rosa × hybrida cultivars as part of a detailed cytological analysis of the rose petal. Adaxial petal epidermal cells have a typical conical, papillate shape whereas abaxial petal epidermal cells are flat. Using two different techniques, solid/liquid phase extraction and headspace collection of volatiles, we showed that, in roses, both epidermal layers are capable of producing and emitting scent volatiles, despite the different morphologies of the cells of these two tissues. Moreover, OOMT, an enzyme involved in scent molecule biosynthesis, was localized in both epidermal layers. These results are discussed in view of results found in others species such as Antirrhinum majus, where it has been shown that the adaxial epidermis is the preferential site of scent production and emission.
PMCID: PMC2634358  PMID: 19704548
floral scent; petal epidermis; Rosa; terpenes; volatiles

Results 1-3 (3)