PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (51)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Annotation of long non-coding RNAs expressed in Collaborative Cross founder mice in response to respiratory virus infection reveals a new class of interferon-stimulated transcripts 
RNA Biology  2014;11(7):875-890.
The outcome of respiratory virus infection is determined by a complex interplay of viral and host factors. Some potentially important host factors for the antiviral response, whose functions remain largely unexplored, are long non-coding RNAs (lncRNAs). Here we systematically inferred the regulatory functions of host lncRNAs in response to influenza A virus and severe acute respiratory syndrome coronavirus (SARS-CoV) based on their similarity in expression with genes of known function. We performed total RNA-Seq on viral-infected lungs from eight mouse strains, yielding a large data set of transcriptional responses. Overall 5,329 lncRNAs were differentially expressed after infection. Most of the lncRNAs were co-expressed with coding genes in modules enriched in genes associated with lung homeostasis pathways or immune response processes. Each lncRNA was further individually annotated using a rank-based method, enabling us to associate 5,295 lncRNAs to at least one gene set and to predict their potential cis effects. We validated the lncRNAs predicted to be interferon-stimulated by profiling mouse responses after interferon-α treatment. Altogether, these results provide a broad categorization of potential lncRNA functions and identify subsets of lncRNAs with likely key roles in respiratory virus pathogenesis. These data are fully accessible through the MOuse NOn-Code Lung interactive database (MONOCLdb).
doi:10.4161/rna.29442
PMCID: PMC4179962  PMID: 24922324
long non-coding rna; influenza virus; sars-cov; rna-seq; interferon; collaborative cross
2.  A Gnotobiotic Mouse Model Demonstrates that Dietary Fiber Protects Against Colorectal Tumorigenesis in a Microbiota- and Butyrate–Dependent Manner 
Cancer discovery  2014;4(12):1387-1397.
It is controversial whether dietary fiber protects against colorectal cancer because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energetic and epigenetic functions in colonocytes and tumorsuppressive properties in colorectal-cancer cell lines. We utilized gnotobiotic mouse models colonized with wild-type or mutant strains of a butyrate-producing bacterium to demonstrate that fiber does have a potent tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. Furthermore, due to the Warburg effect, butyrate was metabolized less in tumors where it accumulated and functioned as an HDAC inhibitor to stimulate histone acetylation and affect apoptosis and cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone-acetylation levels are elevated in colorectal adenocarcinomas compared to normal colonic tissues.
doi:10.1158/2159-8290.CD-14-0501
PMCID: PMC4258155  PMID: 25266735
3.  Toll-Like Receptor 3 Signaling via TRIF Contributes to a Protective Innate Immune Response to Severe Acute Respiratory Syndrome Coronavirus Infection 
mBio  2015;6(3):e00638-15.
ABSTRACT
Toll-like receptors (TLRs) are sensors that recognize molecular patterns from viruses, bacteria, and fungi to initiate innate immune responses to invading pathogens. The emergence of highly pathogenic coronaviruses severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) is a concern for global public health, as there is a lack of efficacious vaccine platforms and antiviral therapeutic strategies. Previously, it was shown that MyD88, an adaptor protein necessary for signaling by multiple TLRs, is a required component of the innate immune response to mouse-adapted SARS-CoV infection in vivo. Here, we demonstrate that TLR3−/−, TLR4−/−, and TRAM−/− mice are more susceptible to SARS-CoV than wild-type mice but experience only transient weight loss with no mortality in response to infection. In contrast, mice deficient in the TLR3/TLR4 adaptor TRIF are highly susceptible to SARS-CoV infection, showing increased weight loss, mortality, reduced lung function, increased lung pathology, and higher viral titers. Distinct alterations in inflammation were present in TRIF−/− mice infected with SARS-CoV, including excess infiltration of neutrophils and inflammatory cell types that correlate with increased pathology of other known causes of acute respiratory distress syndrome (ARDS), including influenza virus infections. Aberrant proinflammatory cytokine, chemokine, and interferon-stimulated gene (ISG) signaling programs were also noted following infection of TRIF−/− mice that were similar to those seen in human patients with poor disease outcome following SARS-CoV or MERS-CoV infection. These findings highlight the importance of TLR adaptor signaling in generating a balanced protective innate immune response to highly pathogenic coronavirus infections.
IMPORTANCE
Toll-like receptors are a family of sensor proteins that enable the immune system to differentiate between “self” and “non-self.” Agonists and antagonists of TLRs have been proposed to have utility as vaccine adjuvants or antiviral compounds. In the last 15 years, the emergence of highly pathogenic coronaviruses SARS-CoV and MERS-CoV has caused significant disease accompanied by high mortality rates in human populations, but no approved therapeutic treatments or vaccines currently exist. Here, we demonstrate that TLR signaling through the TRIF adaptor protein protects mice from lethal SARS-CoV disease. Our findings indicate that a balanced immune response operating through both TRIF-driven and MyD88-driven pathways likely provides the most effective host cell intrinsic antiviral defense responses to severe SARS-CoV disease, while removal of either branch of TLR signaling causes lethal SARS-CoV disease in our mouse model. These data should inform the design and use of TLR agonists and antagonists in coronavirus-specific vaccine and antiviral strategies.
doi:10.1128/mBio.00638-15
PMCID: PMC4447251  PMID: 26015500
4.  Residue 82 of the Chikungunya Virus E2 Attachment Protein Modulates Viral Dissemination and Arthritis in Mice 
Journal of Virology  2014;88(21):12180-12192.
ABSTRACT
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has reemerged to cause profound epidemics of fever, rash, and arthralgia throughout sub-Saharan Africa, Southeast Asia, and the Caribbean. Like other arthritogenic alphaviruses, mechanisms of CHIKV pathogenesis are not well defined. Using the attenuated CHIKV strain 181/25 and virulent strain AF15561, we identified a residue in the E2 viral attachment protein that is a critical determinant of viral replication in cultured cells and pathogenesis in vivo. Viruses containing an arginine at E2 residue 82 displayed enhanced infectivity in mammalian cells but reduced infectivity in mosquito cells and diminished virulence in a mouse model of CHIKV disease. Mice inoculated with virus containing an arginine at this position exhibited reduced swelling at the site of inoculation with a concomitant decrease in the severity of necrosis in joint-associated tissues. Viruses containing a glycine at E2 residue 82 produced higher titers in the spleen and serum at early times postinfection. Using wild-type and glycosaminoglycan (GAG)-deficient Chinese hamster ovary (CHO) cell lines and soluble GAGs, we found that an arginine at residue 82 conferred greater dependence on GAGs for infection of mammalian cells. These data suggest that CHIKV E2 interactions with GAGs diminish dissemination to lymphoid tissue, establishment of viremia, and activation of inflammatory responses early in infection. Collectively, these results suggest a function for GAG utilization in regulating CHIKV tropism and host responses that contribute to arthritis.
IMPORTANCE CHIKV is a reemerging alphavirus of global significance with high potential to spread into new, immunologically naive populations. The severity of CHIKV disease, particularly its propensity for chronic musculoskeletal manifestations, emphasizes the need for identification of genetic determinants that dictate CHIKV virulence in the host. To better understand mechanisms of CHIKV pathogenesis, we probed the function of an amino acid polymorphism in the E2 viral attachment protein using a mouse model of CHIKV musculoskeletal disease. In addition to influencing glycosaminoglycan utilization, we identified roles for this polymorphism in differential infection of mammalian and mosquito cells and targeting of CHIKV to specific tissues within infected mice. These studies demonstrate a correlation between CHIKV tissue tropism and virus-induced pathology modulated by a single polymorphism in E2, which in turn illuminates potential targets for vaccine and antiviral drug development.
doi:10.1128/JVI.01672-14
PMCID: PMC4248890  PMID: 25142598
5.  High Rates of O’Nyong Nyong and Chikungunya Virus Transmission in Coastal Kenya 
PLoS Neglected Tropical Diseases  2015;9(2):e0003436.
Background
Chikungunya virus (CHIKV) and o’nyong nyong virus (ONNV) are mosquito-borne alphaviruses endemic in East Africa that cause acute febrile illness and arthritis. The objectives of this study were to measure the seroprevalence of CHIKV and ONNV in coastal Kenya and link it to demographics and other risk factors.
Methodology
Demographic and exposure questionnaires were administered to 1,848 participants recruited from two village clusters (Milalani-Nganja and Vuga) in 2009. Sera were tested for alphavirus exposure using standardized CHIKV IgG ELISA protocols and confirmed with plaque reduction neutralization tests (PRNT). Logistic regression models were used to determine the variables associated with seropositivity. Weighted K test for global clustering of houses with alphavirus positive participants was performed for distance ranges of 50–1,000 meters, and G* statistic and kernel density mapping were used to identify locations of higher seroprevalence.
Principal Findings
486 (26%) participants were seropositive by IgG ELISA. Of 443 PRNT confirmed positives, 25 samples (6%) were CHIKV+, 250 samples (56%) were ONNV+, and 168 samples (38%) had high titers for both. Age was significantly associated with seropositivity (OR 1.01 per year, 95% C.I. 1.00–1.01); however, younger adults were more likely to be seropositive than older adults. Males were less likely to be seropositive (p<0.05; OR 0.79, 95% C.I. 0.64–0.97). Adults who owned a bicycle (p<0.05; OR 1.37, 95% C.I. 1.00–1.85) or motor vehicle (p<0.05; OR 4.64, 95% C.I. 1.19–18.05) were more likely to be seropositive. Spatial analysis demonstrated hotspots of transmission within each village and clustering among local households in Milalani-Nganja, peaking at the 200–500m range.
Conclusions/Significance
Alphavirus exposure, particularly ONNV exposure, is common in coastal Kenya with ongoing interepidemic transmission of both ONNV and CHIKV. Women and adults were more likely to be seropositive. Household location may be a defining factor for the ecology of alphaviral transmission in this region.
Author Summary
Alphaviruses, such as chikungunya and o’nyong nyong viruses, are likely important causes of human disease in endemic regions, but are often misdiagnosed as malaria in the acute care setting. Our objective was to uncover the burden of alphavirus exposure in our study region, rural coastal Kenya. Of 1848 participants tested, 26% were seropositive by screening ELISA, demonstrating intense transmission to humans in this area. Surprisingly, confirmatory PRNT testing revealed that the majority of alphavirus exposures were due to o’nyong nyong virus, rather than chikungunya virus. Both CHIKV and ONNV antibodies were confirmed in young children, demonstrating undocumented and ongoing transmission in this region. Of the examined risk factors, older age and female gender were associated with alphavirus seropositivity.
doi:10.1371/journal.pntd.0003436
PMCID: PMC4319898  PMID: 25658762
6.  Regulation of the hepatitis C virus RNA replicase by endogenous lipid peroxidation 
Nature medicine  2014;20(8):927-935.
Although oxidative tissue injury often accompanies viral infection, there is little understanding of how it influences virus replication. We show that multiple hepatitis C virus (HCV) genotypes are exquisitely sensitive to oxidative membrane damage, a property distinguishing them from other pathogenic RNA viruses. Lipid peroxidation, regulated in part through sphingosine kinase 2, severely restricts HCV replication in Huh-7 cells and primary human hepatoblasts. Endogenous oxidative membrane damage lowers the 50% effective concentration of direct-acting antivirals, suggesting critical regulation of the conformation of the NS3/4A protease and NS5B polymerase, membrane-bound HCV replicase components. Resistance to lipid peroxidation maps genetically to trans-membrane and membrane-proximal residues within these proteins, and is essential for robust replication in cell culture, as exemplified by the atypical JFH1 strain. Thus, the typical, wild-type HCV replicase is uniquely regulated by lipid peroxidation, providing a novel mechanism for attenuating replication in stressed tissue and possibly facilitating long-term viral persistence.
doi:10.1038/nm.3610
PMCID: PMC4126843  PMID: 25064127
7.  Host genetic diversity enables Ebola hemorrhagic fever pathogenesis and resistance 
Science (New York, N.Y.)  2014;346(6212):987-991.
Existing mouse models of lethal Ebola virus infection do not reproduce hallmark symptoms of Ebola hemorrhagic fever, neither delayed blood coagulation and disseminated intravascular coagulation, nor death from shock, thus restricting pathogenesis studies to non-human primates. Here we show that mice from the Collaborative Cross exhibit distinct disease phenotypes following mouse-adapted Ebola virus infection. Phenotypes range from complete resistance to lethal disease to severe hemorrhagic fever characterized by prolonged coagulation times and 100% mortality. Inflammatory signaling was associated with vascular permeability and endothelial activation, and resistance to lethal infection arose by induction of lymphocyte differentiation and cellular adhesion, likely mediated by the susceptibility allele Tek. These data indicate that genetic background determines susceptibility to Ebola hemorrhagic fever.
doi:10.1126/science.1259595
PMCID: PMC4241145  PMID: 25359852
8.  Mouse Dipeptidyl Peptidase 4 Is Not a Functional Receptor for Middle East Respiratory Syndrome Coronavirus Infection 
Journal of Virology  2014;88(9):5195-5199.
Human dipeptidyl peptidase 4 (hDPP4) was recently identified as the receptor for Middle East respiratory syndrome coronavirus (MERS-CoV) infection, suggesting that other mammalian DPP4 orthologs may also support infection. We demonstrate that mouse DPP4 cannot support MERS-CoV infection. However, employing mouse DPP4 as a scaffold, we identified two critical amino acids (A288L and T330R) that regulate species specificity in the mouse. This knowledge can support the rational design of a mouse-adapted MERS-CoV for rapid assessment of therapeutics.
doi:10.1128/JVI.03764-13
PMCID: PMC3993820  PMID: 24574399
9.  A Single-Amino-Acid Polymorphism in Chikungunya Virus E2 Glycoprotein Influences Glycosaminoglycan Utilization 
Journal of Virology  2014;88(5):2385-2397.
ABSTRACT
Chikungunya virus (CHIKV) is a reemerging arbovirus responsible for outbreaks of infection throughout Asia and Africa, causing an acute illness characterized by fever, rash, and polyarthralgia. Although CHIKV infects a broad range of host cells, little is known about how CHIKV binds and gains access to the target cell interior. In this study, we tested whether glycosaminoglycan (GAG) binding is required for efficient CHIKV replication using CHIKV vaccine strain 181/25 and clinical isolate SL15649. Preincubation of strain 181/25, but not SL15649, with soluble GAGs resulted in dose-dependent inhibition of infection. While parental Chinese hamster ovary (CHO) cells are permissive for both strains, neither strain efficiently bound to or infected mutant CHO cells devoid of GAG expression. Although GAGs appear to be required for efficient binding of both strains, they exhibit differential requirements for GAGs, as SL15649 readily infected cells that express excess chondroitin sulfate but that are devoid of heparan sulfate, whereas 181/25 did not. We generated a panel of 181/25 and SL15649 variants containing reciprocal amino acid substitutions at positions 82 and 318 in the E2 glycoprotein. Reciprocal exchange at residue 82 resulted in a phenotype switch; Gly82 results in efficient infection of mutant CHO cells but a decrease in heparin binding, whereas Arg82 results in reduced infectivity of mutant cells and an increase in heparin binding. These results suggest that E2 residue 82 is a primary determinant of GAG utilization, which likely mediates attenuation of vaccine strain 181/25.
IMPORTANCE Chikungunya virus (CHIKV) infection causes a debilitating rheumatic disease that can persist for months to years, and yet there are no licensed vaccines or antiviral therapies. Like other alphaviruses, CHIKV displays broad tissue tropism, which is thought to be influenced by virus-receptor interactions. In this study, we determined that cell-surface glycosaminoglycans are utilized by both a vaccine strain and a clinical isolate of CHIKV to mediate virus binding. We also identified an amino acid polymorphism in the viral E2 attachment protein that influences utilization of glycosaminoglycans. These data enhance an understanding of the viral and host determinants of CHIKV cell entry, which may foster development of new antivirals that act by blocking this key step in viral infection.
doi:10.1128/JVI.03116-13
PMCID: PMC3958064  PMID: 24371059
10.  Genomic Profiling of Collaborative Cross Founder Mice Infected with Respiratory Viruses Reveals Novel Transcripts and Infection-Related Strain-Specific Gene and Isoform Expression 
G3: Genes|Genomes|Genetics  2014;4(8):1429-1444.
Genetic variation between diverse mouse species is well-characterized, yet existing knowledge of the mouse transcriptome comes largely from one mouse strain (C57BL/6J). As such, it is unlikely to reflect the transcriptional complexity of the mouse species. Gene transcription is dynamic and condition-specific; therefore, to better understand the mouse transcriptional response to respiratory virus infection, we infected the eight founder strains of the Collaborative Cross with either influenza A virus or severe acute respiratory syndrome coronavirus and sequenced lung RNA samples at 2 and 4 days after infection. We found numerous instances of transcripts that were not present in the C57BL/6J reference annotation, indicating that a nontrivial proportion of the mouse genome is transcribed but poorly annotated. Of these novel transcripts, 2150 could be aligned to human or rat genomes, but not to existing mouse genomes, suggesting functionally conserved sequences not yet recorded in mouse genomes. We also found that respiratory virus infection induced differential expression of 4287 splicing junctions, resulting in strain-specific isoform expression. Of these, 59 were influenced by strain-specific mutations within 2 base pairs of key intron–exon boundaries, suggesting cis-regulated expression. Our results reveal the complexity of the transcriptional response to viral infection, previously undocumented genomic elements, and extensive diversity in the response across mouse strains. These findings identify hitherto unexplored transcriptional patterns and undocumented transcripts in genetically diverse mice. Host genetic variation drives the complexity and diversity of the host response by eliciting starkly different transcriptional profiles in response to a viral infection.
doi:10.1534/g3.114.011759
PMCID: PMC4132174  PMID: 24902603
RNA-seq; mouse transcriptome annotation; isoform differential expression; collaborative cross; viral infection
11.  A Mouse Model for Betacoronavirus Subgroup 2c Using a Bat Coronavirus Strain HKU5 Variant 
mBio  2014;5(2):e00047-14.
ABSTRACT
Cross-species transmission of zoonotic coronaviruses (CoVs) can result in pandemic disease outbreaks. Middle East respiratory syndrome CoV (MERS-CoV), identified in 2012, has caused 182 cases to date, with ~43% mortality, and no small animal model has been reported. MERS-CoV and Pipistrellus bat coronavirus (BtCoV) strain HKU5 of Betacoronavirus (β-CoV) subgroup 2c share >65% identity at the amino acid level in several regions, including nonstructural protein 5 (nsp5) and the nucleocapsid (N) protein, which are significant drug and vaccine targets. BtCoV HKU5 has been described in silico but has not been shown to replicate in culture, thus hampering drug and vaccine studies against subgroup 2c β-CoVs. We report the synthetic reconstruction and testing of BtCoV HKU5 containing the severe acute respiratory syndrome (SARS)-CoV spike (S) glycoprotein ectodomain (BtCoV HKU5-SE). This virus replicates efficiently in cell culture and in young and aged mice, where the virus targets airway and alveolar epithelial cells. Unlike some subgroup 2b SARS-CoV vaccines that elicit a strong eosinophilia following challenge, we demonstrate that BtCoV HKU5 and MERS-CoV N-expressing Venezuelan equine encephalitis virus replicon particle (VRP) vaccines do not cause extensive eosinophilia following BtCoV HKU5-SE challenge. Passage of BtCoV HKU5-SE in young mice resulted in enhanced virulence, causing 20% weight loss, diffuse alveolar damage, and hyaline membrane formation in aged mice. Passaged virus was characterized by mutations in the nsp13, nsp14, open reading frame 5 (ORF5) and M genes. Finally, we identified an inhibitor active against the nsp5 proteases of subgroup 2c β-CoVs. Synthetic-genome platforms capable of reconstituting emerging zoonotic viral pathogens or their phylogenetic relatives provide new strategies for identifying broad-based therapeutics, evaluating vaccine outcomes, and studying viral pathogenesis.
IMPORTANCE
The 2012 outbreak of MERS-CoV raises the specter of another global epidemic, similar to the 2003 SARS-CoV epidemic. MERS-CoV is related to BtCoV HKU5 in target regions that are essential for drug and vaccine testing. Because no small animal model exists to evaluate MERS-CoV pathogenesis or to test vaccines, we constructed a recombinant BtCoV HKU5 that expressed a region of the SARS-CoV spike (S) glycoprotein, thereby allowing the recombinant virus to grow in cell culture and in mice. We show that this recombinant virus targets airway epithelial cells and causes disease in aged mice. We use this platform to (i) identify a broad-spectrum antiviral that can potentially inhibit viruses closely related to MERS-CoV, (ii) demonstrate the absence of increased eosinophilic immune pathology for MERS-CoV N protein-based vaccines, and (iii) mouse adapt this virus to identify viral genetic determinants of cross-species transmission and virulence. This study holds significance as a strategy to control newly emerging viruses.
doi:10.1128/mBio.00047-14
PMCID: PMC3977350  PMID: 24667706
12.  Regulatory B Cell (B10 Cell) Expansion During Listeria Infection Governs Innate and Cellular Immune Responses In Mice 
Pathogens use numerous methods to subvert host immune responses, including the modulation of host IL-10 production by diverse cell types. However, the B cell sources of IL-10 and their overall influence on innate and cellular immune responses have not been well characterized during infections. Using Listeria as a model pathogen, infection drove the acute expansion of a small subset of regulatory B cells (B10 cells) that potently suppress inflammation and autoimmunity through the production of IL-10. Unexpectedly, spleen bacteria loads were 92–97% lower in B10 cell-deficient CD19−/− mice, in mice depleted of mature B cells, and in mice treated with CD22 mAb to preferentially deplete B10 cells before infection. By contrast, the adoptive transfer of wild type B10 cells reduced bacterial clearance by 38-fold in CD19−/− mice through IL-10-dependent pathways. B10 cell depletion using CD22 mAb significantly enhanced macrophage phagocytosis of Listeria and their production of IFN-γ, TNF-α, and nitric oxide ex vivo. Accelerated bacteria clearance following B10 cell depletion significantly reduced Ag-specific CD4+ T cell proliferation and cytokine production, but did not alter CD8+ T cell responses. B10 cell regulatory function during innate immune responses was nonetheless dependent on cognate interactions with CD4+ T cells since B10 cells deficient in IL-10, MHC-II or IL-21 receptor expression did not influence Listeria clearance. Thus, Listeria manipulates immune responses through a strategy of immune evasion that involves the preferential expansion of endogenous B10 cells that regulate the magnitude and duration of both innate and cellular immune responses.
doi:10.4049/jimmunol.1201427
PMCID: PMC3552111  PMID: 23275601
B cells; Listeria monocytogenes; innate immunity; regulatory B cells; B10 cells
14.  Dendritic Cell Immunoreceptor Regulates Chikungunya Virus Pathogenesis in Mice 
Journal of Virology  2013;87(10):5697-5706.
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for recent epidemic outbreaks of debilitating disease in humans. Alphaviruses are known to interact with members of the C-type lectin receptor family of pattern recognition proteins, and given that the dendritic cell immunoreceptor (DCIR) is known to act as a negative regulator of the host inflammatory response and has previously been associated with rheumatoid arthritis, we evaluated DCIR's role in response to CHIKV infection. Although we observed an increase in the proportion of dendritic cells at the site of CHIKV infection at 24 to 36 h postinfection, these cells showed decreased cell surface DCIR, suggestive of DCIR triggering and internalization. In vitro, bone marrow-derived dendritic cells from DCIR-deficient (DCIR−/−) mice exhibited altered cytokine expression following exposure to CHIKV. DCIR−/− mice exhibited more severe disease signs than wild-type C57BL6/J mice following CHIKV infection, including a more rapid and more severe onset of virus-induced edema and enhanced weight loss. Histological examination revealed that DCIR-deficient animals exhibited increased inflammation and damage in both the fascia of the inoculated foot and the ankle joint, and DCIR deficiency skewed the CHIKV-induced cytokine response at the site of infection at multiple times postinfection. Early differences in virus-induced disease between C57BL6/J and DCIR−/− mice were independent of viral replication, while extended viral replication correlated with enhanced foot swelling and tissue inflammation and damage in DCIR−/− compared to C57BL6/J mice at 6 to 7 days postinfection. These results suggest that DCIR plays a protective role in limiting the CHIKV-induced inflammatory response and subsequent tissue and joint damage.
doi:10.1128/JVI.01611-12
PMCID: PMC3648201  PMID: 23487448
15.  The Viral Interferon Regulatory Factors of Kaposi's Sarcoma-Associated Herpesvirus Differ in Their Inhibition of Interferon Activation Mediated by Toll-Like Receptor 3 
Journal of Virology  2013;87(2):798-806.
Kaposi's sarcoma-associated herpesvirus (KSHV) infection is correlated with three human malignancies and can establish lifelong latent infection in multiple cell types within its human host. In order to establish and maintain infection, KSHV utilizes multiple mechanisms to evade the host immune response. One such mechanism is the expression of a family of genes with homology to cellular interferon (IFN) regulatory factors (IRFs), known as viral IRFs (vIRFs). We demonstrate here that KSHV vIRF1, -2, and -3 have a differential ability to block type I interferon signaling mediated by Toll-like receptor 3 (TLR3), a receptor we have previously shown to be activated upon KSHV infection. vIRF1, -2, and -3 inhibited TLR3-driven activation of IFN transcription reporters. However, only vIRF1 and vIRF2 inhibited increases in both IFN-β message and protein levels following TLR3 activation. The expression of vIRF1 and vIRF2 also allowed for increased replication of a virus known to activate TLR3 signaling. Furthermore, vIRF1 and vIRF2 may block TLR3-mediated signaling via different mechanisms. Altogether, this report indicates that vIRFs are able to block IFN mediated by TLRs but that each vIRF has a unique function and mechanism for blocking antiviral IFN responses.
doi:10.1128/JVI.01851-12
PMCID: PMC3554052  PMID: 23115281
16.  Development of a Highly Protective Combination Monoclonal Antibody Therapy against Chikungunya Virus 
PLoS Pathogens  2013;9(4):e1003312.
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes global epidemics of a debilitating polyarthritis in humans. As there is a pressing need for the development of therapeutic agents, we screened 230 new mouse anti-CHIKV monoclonal antibodies (MAbs) for their ability to inhibit infection of all three CHIKV genotypes. Four of 36 neutralizing MAbs (CHK-102, CHK-152, CHK-166, and CHK-263) provided complete protection against lethality as prophylaxis in highly susceptible immunocompromised mice lacking the type I IFN receptor (Ifnar−/−) and mapped to distinct epitopes on the E1 and E2 structural proteins. CHK-152, the most protective MAb, was humanized, shown to block viral fusion, and require Fc effector function for optimal activity in vivo. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs (CHK-102+CHK-152 or CHK-166+CHK-152) limited the development of resistance and protected immunocompromised mice against disease when given 24 to 36 hours before CHIKV-induced death. Selected pairs of highly neutralizing MAbs may be a promising treatment option for CHIKV in humans.
Author Summary
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes outbreaks of polyarthritis in humans, and is currently a threat to spread to the United States due to the presence of its mosquito vector, Aedes albopictus. At present, there is no licensed human vaccine or therapeutic available to protect against CHIKV infection. The primary goal of this study was to develop an antibody-based therapeutic agent against CHIKV. To do this, we developed a panel of 230 new mouse anti-CHIKV MAbs and tested them for their ability to neutralize infection of different CHIKV strains in cell culture. We identified 36 MAbs with broad neutralizing activity, and then tested several of these for their ability to protect immunocompromised Ifnar−/− mice against lethal CHIKV infection. In post-exposure therapeutic trials, administration of a single dose of a combination of two neutralizing MAbs limited the development of resistance and protected Ifnar−/− mice against disease even when given just 24 to 36 hours before CHIKV-induced death. Analogous protection against CHIKV-induced arthritis was seen in a disease model in wild type mice. Our data suggest that pairs of highly neutralizing MAbs may be a therapeutic option against CHIKV infection.
doi:10.1371/journal.ppat.1003312
PMCID: PMC3630103  PMID: 23637602
17.  Myd88-Dependent Toll-Like Receptor 7 Signaling Mediates Protection from Severe Ross River Virus-Induced Disease in Mice 
Journal of Virology  2012;86(19):10675-10685.
Arthralgia-associated alphaviruses, including chikungunya virus (CHIKV) and Ross River virus (RRV), pose significant public health threats because of their ability to cause explosive outbreaks of debilitating arthralgia and myalgia in human populations. Although the host inflammatory response is known to contribute to the pathogenesis of alphavirus-induced arthritis and myositis, the role that Toll-like receptors (TLRs), which are major regulators of host antiviral and inflammatory responses, play in the pathogenesis of alphavirus-induced arthritis and myositis has not been extensively studied. Using a mouse model of RRV-induced myositis/arthritis, we found that myeloid differentiation primary response gene 88 (Myd88)-dependent TLR7 signaling is involved in protection from severe RRV-associated disease. Infections of Myd88- and TLR7-deficient mouse strains with RRV revealed that both Myd88 and TLR7 significantly contributed to protection from RRV-induced mortality, and both mouse strains exhibited more severe tissue damage than wild-type (WT) mice following RRV infection. While viral loads were unchanged in either Myd88 or TLR7 knockout mice compared to WT mice at early times postinfection, both Myd88 and TLR7 knockout mice exhibited higher viral loads than WT mice at late times postinfection. Furthermore, while high levels of RRV-specific antibody were produced in TLR7-deficient mice, this antibody had very little neutralizing activity and had lower affinity than WT antibody. Additionally, TLR7- and Myd88-deficient mice showed defects in germinal center activity, suggesting that TLR7-dependent signaling is critical for the development of protective antibody responses against RRV.
doi:10.1128/JVI.00601-12
PMCID: PMC3457316  PMID: 22837203
18.  Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross 
PLoS Pathogens  2013;9(2):e1003196.
Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while maintaining protection from weight loss.
Author Summary
Host responses to an infectious agent are highly variable across the human population, however, it is not entirely clear how various factors such as pathogen dose, demography, environment and host genetic polymorphisms contribute to variable host responses and infectious outcomes. In this study, a new in vivo experimental model was used that recapitulates many of the genetic characteristics of an outbred population, such as humans. By controlling viral dose, environment and demographic variables, we were able to focus on the role that host genetic variation plays in influenza virus infection. Both the range of disease phenotypes and the combinations of sets of disease phenotypes at 4 days post infection across this population exhibited a large amount of diversity, reminiscent of the variation seen across the human population. Multiple host genome regions were identified that contributed to different aspects of the host response to influenza infection. Taken together, these results emphasize the critical role of host genetics in the response to infectious diseases. Given the breadth of host responses seen within this population, several new models for unique host responses to infection were identified.
doi:10.1371/journal.ppat.1003196
PMCID: PMC3585141  PMID: 23468633
19.  Natural Resistance-associated Macrophage Protein (NRAMP) is a cellular receptor for Sindbis virus in both insect and mammalian hosts 
Cell host & microbe  2011;10(2):97-104.
Summary
Alphaviruses, including several emerging human pathogens, are a large family of mosquito-borne viruses with Sindbis virus being a prototypical member of the genus. The host factor requirements and receptors for entry of for this class of viruses remain obscure. Using a Drosophila system, we identified the divalent metal ion transporter Natural Resistance-Associated Macrophage Protein (NRAMP), as a host cell surface molecule required for Sindbis virus binding and entry into Drosophila cells. Consequently, flies mutant for dNRAMP were protected from virus infection. NRAMP2, the ubiquitously expressed vertebrate homolog, mediated binding and infection of Sindbis virus into mammalian cells, and murine cells deficient for NRAMP2 were non-permissive to infection. Alphavirus glycoprotein chimeras demonstrated that the requirement for NRAMP2 is at the level of Sindbis virus entry. Given the conserved structure of alphavirus glycoproteins, and the widespread use of transporters for viral entry, other alphaviruses may use conserved multi-pass membrane proteins for infection.
doi:10.1016/j.chom.2011.06.009
PMCID: PMC3164510  PMID: 21843867
20.  A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge▿ 
Journal of Virology  2011;85(23):12201-12215.
Severe acute respiratory syndrome coronavirus (SARS-CoV) is an important emerging virus that is highly pathogenic in aged populations and is maintained with great diversity in zoonotic reservoirs. While a variety of vaccine platforms have shown efficacy in young-animal models and against homologous viral strains, vaccine efficacy has not been thoroughly evaluated using highly pathogenic variants that replicate the acute end stage lung disease phenotypes seen during the human epidemic. Using an adjuvanted and an unadjuvanted double-inactivated SARS-CoV (DIV) vaccine, we demonstrate an eosinophilic immunopathology in aged mice comparable to that seen in mice immunized with the SARS nucleocapsid protein, and poor protection against a nonlethal heterologous challenge. In young and 1-year-old animals, we demonstrate that adjuvanted DIV vaccine provides protection against lethal disease in young animals following homologous and heterologous challenge, although enhanced immune pathology and eosinophilia are evident following heterologous challenge. In the absence of alum, DIV vaccine performed poorly in young animals challenged with lethal homologous or heterologous strains. In contrast, DIV vaccines (both adjuvanted and unadjuvanted) performed poorly in aged-animal models. Importantly, aged animals displayed increased eosinophilic immune pathology in the lungs and were not protected against significant virus replication. These data raise significant concerns regarding DIV vaccine safety and highlight the need for additional studies of the molecular mechanisms governing DIV-induced eosinophilia and vaccine failure, especially in the more vulnerable aged-animal models of human disease.
doi:10.1128/JVI.06048-11
PMCID: PMC3209347  PMID: 21937658
21.  Mannose Binding Lectin Is Required for Alphavirus-Induced Arthritis/Myositis 
PLoS Pathogens  2012;8(3):e1002586.
Mosquito-borne alphaviruses such as chikungunya virus and Ross River virus (RRV) are emerging pathogens capable of causing large-scale epidemics of virus-induced arthritis and myositis. The pathology of RRV-induced disease in both humans and mice is associated with induction of the host inflammatory response within the muscle and joints, and prior studies have demonstrated that the host complement system contributes to development of disease. In this study, we have used a mouse model of RRV-induced disease to identify and characterize which complement activation pathways mediate disease progression after infection, and we have identified the mannose binding lectin (MBL) pathway, but not the classical or alternative complement activation pathways, as essential for development of RRV-induced disease. MBL deposition was enhanced in RRV infected muscle tissue from wild type mice and RRV infected MBL deficient mice exhibited reduced disease, tissue damage, and complement deposition compared to wild-type mice. In contrast, mice deficient for key components of the classical or alternative complement activation pathways still developed severe RRV-induced disease. Further characterization of MBL deficient mice demonstrated that similar to C3−/− mice, viral replication and inflammatory cell recruitment were equivalent to wild type animals, suggesting that RRV-mediated induction of complement dependent immune pathology is largely MBL dependent. Consistent with these findings, human patients diagnosed with RRV disease had elevated serum MBL levels compared to healthy controls, and MBL levels in the serum and synovial fluid correlated with severity of disease. These findings demonstrate a role for MBL in promoting RRV-induced disease in both mice and humans and suggest that the MBL pathway of complement activation may be an effective target for therapeutic intervention for humans suffering from RRV-induced arthritis and myositis.
Author Summary
Arthritogenic alphaviruses such as Ross River virus (RRV) and chikungunya virus are transmitted to humans by mosquitoes and cause epidemics of debilitating infectious arthritis and myositis in various areas around the world. Studies in humans and mice indicate that the host inflammatory response is critical for development of RRV-induced arthritis and myositis, and the host complement system, a component of the host inflammatory response, plays an essential role in the development of RRV-induced disease through activation of complement receptor 3 (CR3)-bearing inflammatory cells. Of the three main complement activation pathways, only the lectin pathway activated by mannose binding lectin (MBL) was essential for RRV-induced complement activation, tissue destruction, and disease. Furthermore, we found that levels of MBL were elevated in human patients suffering from RRV-induced polyarthritis and MBL levels correlated with disease severity. Taken together, our data implicates a role for MBL in mediating RRV-induced disease in both humans and mice, and suggests that therapeutic targeting of MBL may be an effective strategy for disease treatment in humans.
doi:10.1371/journal.ppat.1002586
PMCID: PMC3310795  PMID: 22457620
22.  Mutations in nsP1 and PE2 are critical determinants of Ross River virus-induced musculoskeletal inflammatory disease in a mouse model 
Virology  2010;410(1):216-227.
The viral determinants of Alphavirus-induced rheumatic disease have not been elucidated. We identified an RRV strain (DC5692) which, in contrast to the T48 strain, does not induce musculoskeletal inflammation in a mouse model of RRV disease. Substitution of the RRV T48 strain nonstructural protein 1 (nsP1) coding sequence with that from strain DC5692 generated a virus that was attenuated in vivo despite similar viral loads in tissues. In contrast, substitution of the T48 PE2 coding region with the PE2 coding region from DC5692 resulted in attenuation in vivo and reduced viral loads in tissues. In gain of virulence experiments, substitution of the DC5692 strain nsP1 and PE2 coding regions with those from the T48 strain was sufficient to restore full virulence to the DC5692 strain. These findings indicate that determinants in both nsP1 and PE2 have critical and distinct roles in the pathogenesis of RRV-induced musculoskeletal inflammatory disease in mice.
doi:10.1016/j.virol.2010.11.012
PMCID: PMC3017666  PMID: 21131014
Alphavirus; pathogenesis; virulence; inflammation; rheumatic disease
23.  Expression Quantitative Trait Loci for Extreme Host Response to Influenza A in Pre-Collaborative Cross Mice 
G3: Genes|Genomes|Genetics  2012;2(2):213-221.
Outbreaks of influenza occur on a yearly basis, causing a wide range of symptoms across the human population. Although evidence exists that the host response to influenza infection is influenced by genetic differences in the host, this has not been studied in a system with genetic diversity mirroring that of the human population. Here we used mice from 44 influenza-infected pre-Collaborative Cross lines determined to have extreme phenotypes with regard to the host response to influenza A virus infection. Global transcriptome profiling identified 2671 transcripts that were significantly differentially expressed between mice that showed a severe (“high”) and mild (“low”) response to infection. Expression quantitative trait loci mapping was performed on those transcripts that were differentially expressed because of differences in host response phenotype to identify putative regulatory regions potentially controlling their expression. Twenty-one significant expression quantitative trait loci were identified, which allowed direct examination of genes associated with regulation of host response to infection. To perform initial validation of our findings, quantitative polymerase chain reaction was performed in the infected founder strains, and we were able to confirm or partially confirm more than 70% of those tested. In addition, we explored putative causal and reactive (downstream) relationships between the significantly regulated genes and others in the high or low response groups using structural equation modeling. By using systems approaches and a genetically diverse population, we were able to develop a novel framework for identifying the underlying biological subnetworks under host genetic control during influenza virus infection.
doi:10.1534/g3.111.001800
PMCID: PMC3284329  PMID: 22384400
eQTL; influenza; collaborative cross; host response; SEM; Mouse Collaborative Cross; Mouse Genetic Resource
24.  Integrative Deep Sequencing of the Mouse Lung Transcriptome Reveals Differential Expression of Diverse Classes of Small RNAs in Response to Respiratory Virus Infection 
mBio  2011;2(6):e00198-11.
ABSTRACT
We previously reported widespread differential expression of long non-protein-coding RNAs (ncRNAs) in response to virus infection. Here, we expanded the study through small RNA transcriptome sequencing analysis of the host response to both severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza virus infections across four founder mouse strains of the Collaborative Cross, a recombinant inbred mouse resource for mapping complex traits. We observed differential expression of over 200 small RNAs of diverse classes during infection. A majority of identified microRNAs (miRNAs) showed divergent changes in expression across mouse strains with respect to SARS-CoV and influenza virus infections and responded differently to a highly pathogenic reconstructed 1918 virus compared to a minimally pathogenic seasonal influenza virus isolate. Novel insights into miRNA expression changes, including the association with pathogenic outcomes and large differences between in vivo and in vitro experimental systems, were further elucidated by a survey of selected miRNAs across diverse virus infections. The small RNAs identified also included many non-miRNA small RNAs, such as small nucleolar RNAs (snoRNAs), in addition to nonannotated small RNAs. An integrative sequencing analysis of both small RNAs and long transcripts from the same samples showed that the results revealing differential expression of miRNAs during infection were largely due to transcriptional regulation and that the predicted miRNA-mRNA network could modulate global host responses to virus infection in a combinatorial fashion. These findings represent the first integrated sequencing analysis of the response of host small RNAs to virus infection and show that small RNAs are an integrated component of complex networks involved in regulating the host response to infection.
IMPORTANCE
Most studies examining the host transcriptional response to infection focus only on protein-coding genes. However, mammalian genomes transcribe many short and long non-protein-coding RNAs (ncRNAs). With the advent of deep-sequencing technologies, systematic transcriptome analysis of the host response, including analysis of ncRNAs of different sizes, is now possible. Using this approach, we recently discovered widespread differential expression of host long (>200 nucleotide [nt]) ncRNAs in response to virus infection. Here, the samples described in the previous report were again used, but we sequenced another fraction of the transcriptome to study very short (about 20 to 30 nt) ncRNAs. We demonstrated that virus infection also altered expression of many short ncRNAs of diverse classes. Putting the results of the two studies together, we show that small RNAs may also play an important role in regulating the host response to virus infection.
doi:10.1128/mBio.00198-11
PMCID: PMC3221602  PMID: 22086488
25.  Successful Vaccination Strategies That Protect Aged Mice from Lethal Challenge from Influenza Virus and Heterologous Severe Acute Respiratory Syndrome Coronavirus ▿  
Journal of Virology  2010;85(1):217-230.
Newly emerging viruses often circulate as a heterogeneous swarm in wild animal reservoirs prior to their emergence in humans, and their antigenic identities are often unknown until an outbreak situation. The newly emerging severe acute respiratory syndrome coronavirus (SARS-CoV) and reemerging influenza virus cause disproportionate disease in the aged, who are also notoriously difficult to successfully vaccinate, likely due to immunosenescence. To protect against future emerging strains, vaccine platforms should induce broad cross-reactive immunity that is sufficient to protect from homologous and heterologous challenge in all ages. From initial studies, we hypothesized that attenuated Venezuelan equine encephalitis virus (VEE) replicon particle (VRP) vaccine glycoproteins mediated vaccine failure in the aged. We then compared the efficacies of vaccines bearing attenuated (VRP3014) or wild-type VEE glycoproteins (VRP3000) in young and aged mice within novel models of severe SARS-CoV pathogenesis. Aged animals receiving VRP3000-based vaccines were protected from SARS-CoV disease, while animals receiving the VRP3014-based vaccines were not. The superior protection for the aged observed with VRP3000-based vaccines was confirmed in a lethal influenza virus challenge model. While the VRP3000 vaccine's immune responses in the aged were sufficient to protect against lethal homologous and heterologous challenge, our data suggest that innate defects within the VRP3014 platform mediate vaccine failure. Exploration into the mechanism(s) of successful vaccination in the immunosenescent should aid in the development of successful vaccine strategies for other viral diseases disproportionately affecting the elderly, like West Nile virus, influenza virus, norovirus, or other emerging viruses of the future.
doi:10.1128/JVI.01805-10
PMCID: PMC3014161  PMID: 20980507

Results 1-25 (51)