Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Knowledge Retrieval from PubMed Abstracts and Electronic Medical Records with the Multiple Sclerosis Ontology 
PLoS ONE  2015;10(2):e0116718.
In order to retrieve useful information from scientific literature and electronic medical records (EMR) we developed an ontology specific for Multiple Sclerosis (MS).
The MS Ontology was created using scientific literature and expert review under the Protégé OWL environment. We developed a dictionary with semantic synonyms and translations to different languages for mining EMR. The MS Ontology was integrated with other ontologies and dictionaries (diseases/comorbidities, gene/protein, pathways, drug) into the text-mining tool SCAIView. We analyzed the EMRs from 624 patients with MS using the MS ontology dictionary in order to identify drug usage and comorbidities in MS. Testing competency questions and functional evaluation using F statistics further validated the usefulness of MS ontology.
Validation of the lexicalized ontology by means of named entity recognition-based methods showed an adequate performance (F score = 0.73). The MS Ontology retrieved 80% of the genes associated with MS from scientific abstracts and identified additional pathways targeted by approved disease-modifying drugs (e.g. apoptosis pathways associated with mitoxantrone, rituximab and fingolimod). The analysis of the EMR from patients with MS identified current usage of disease modifying drugs and symptomatic therapy as well as comorbidities, which are in agreement with recent reports.
The MS Ontology provides a semantic framework that is able to automatically extract information from both scientific literature and EMR from patients with MS, revealing new pathogenesis insights as well as new clinical information.
PMCID: PMC4321837  PMID: 25665127
2.  HuPSON: the human physiology simulation ontology 
Large biomedical simulation initiatives, such as the Virtual Physiological Human (VPH), are substantially dependent on controlled vocabularies to facilitate the exchange of information, of data and of models. Hindering these initiatives is a lack of a comprehensive ontology that covers the essential concepts of the simulation domain.
We propose a first version of a newly constructed ontology, HuPSON, as a basis for shared semantics and interoperability of simulations, of models, of algorithms and of other resources in this domain. The ontology is based on the Basic Formal Ontology, and adheres to the MIREOT principles; the constructed ontology has been evaluated via structural features, competency questions and use case scenarios.
The ontology is freely available at: (owl files) and (browser).
HuPSON provides a framework for a) annotating simulation experiments, b) retrieving relevant information that are required for modelling, c) enabling interoperability of algorithmic approaches used in biomedical simulation, d) comparing simulation results and e) linking knowledge-based approaches to simulation-based approaches. It is meant to foster a more rapid uptake of semantic technologies in the modelling and simulation domain, with particular focus on the VPH domain.
PMCID: PMC4177144  PMID: 24267822
Simulation; Algorithm; Interoperability; Ontology; Semantics; Text mining
3.  Knowledge sharing and collaboration in translational research, and the DC-THERA Directory 
Briefings in Bioinformatics  2011;12(6):562-575.
Biomedical research relies increasingly on large collections of data sets and knowledge whose generation, representation and analysis often require large collaborative and interdisciplinary efforts. This dimension of ‘big data’ research calls for the development of computational tools to manage such a vast amount of data, as well as tools that can improve communication and access to information from collaborating researchers and from the wider community. Whenever research projects have a defined temporal scope, an additional issue of data management arises, namely how the knowledge generated within the project can be made available beyond its boundaries and life-time. DC-THERA is a European ‘Network of Excellence’ (NoE) that spawned a very large collaborative and interdisciplinary research community, focusing on the development of novel immunotherapies derived from fundamental research in dendritic cell immunobiology. In this article we introduce the DC-THERA Directory, which is an information system designed to support knowledge management for this research community and beyond. We present how the use of metadata and Semantic Web technologies can effectively help to organize the knowledge generated by modern collaborative research, how these technologies can enable effective data management solutions during and beyond the project lifecycle, and how resources such as the DC-THERA Directory fit into the larger context of e-science.
PMCID: PMC3220873  PMID: 21969471
semantic web; ontology; immunology; eScience; data integration
4.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
PMCID: PMC3000836  PMID: 21092113

Results 1-4 (4)