Search tips
Search criteria

Results 1-25 (58)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
1.  Opportunities for immunotherapy in microsatellite instable colorectal cancer 
Cancer Immunology, Immunotherapy  2016;65(10):1249-1259.
Microsatellite instability (MSI), the somatic accumulation of length variations in repetitive DNA sequences called microsatellites, is frequently observed in both hereditary and sporadic colorectal cancer (CRC). It has been established that defects in the DNA mismatch repair (MMR) pathway underlie the development of MSI in CRC. After the inactivation of the DNA MMR pathway, misincorporations, insertions and deletions introduced by DNA polymerase slippage are not properly recognized and corrected. Specific genomic regions, including microsatellites, are more prone for DNA polymerase slippage and, therefore, more susceptible for the introduction of these mutations if the DNA MMR capacity is lost. Some of these susceptible genomic regions are located within the coding regions of genes. Insertions and deletions in these regions may alter their reading frame, potentially resulting in the transcription and translation of frameshift peptides with c-terminally altered amino acid sequences. These frameshift peptides are called neoantigens and are highly immunogenic, which explains the enhanced immunogenicity of MSI CRC. Neoantigens contribute to increased infiltration of tumor tissue with activated neoantigen-specific cytotoxic T lymphocytes, a hallmark of MSI tumors. Currently, neoantigen-based vaccination is being studied in a clinical trial for Lynch syndrome and in a trial for sporadic MSI CRC of advanced stage. In this Focussed Research Review, we summarize current knowledge on molecular mechanisms and address immunological features of tumors with MSI. Finally, we describe their implications for immunotherapeutic approaches and provide an outlook on next-generation immunotherapy involving neoantigens and combinatorial therapies in the setting of MSI CRC.
PMCID: PMC5035655  PMID: 27060000
Microsatellite instability; Frameshift-derived neoantigens; Colorectal cancer; Lynch syndrome; Immunotherapy; CIMT 2015
2.  Human CD1c+ DCs are critical cellular mediators of immune responses induced by immunogenic cell death 
Oncoimmunology  2016;5(8):e1192739.
Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation.
Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c+ DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c+ DCs are critical mediators of immune responses induced by ICD.
PMCID: PMC5007971  PMID: 27622063
CD1c+ DCs; human dendritic cells; immune response; immunogenic cell death; platinum chemotherapy; T cell proliferation
3.  Proteomics of Human Dendritic Cell Subsets Reveals Subset-Specific Surface Markers and Differential Inflammasome Function 
Cell Reports  2016;16(11):2953-2966.
Dendritic cells (DCs) play a key role in orchestrating adaptive immune responses. In human blood, three distinct subsets exist: plasmacytoid DCs (pDCs) and BDCA3+ and CD1c+ myeloid DCs. In addition, a DC-like CD16+ monocyte has been reported. Although RNA-expression profiles have been previously compared, protein expression data may provide a different picture. Here, we exploited label-free quantitative mass spectrometry to compare and identify differences in primary human DC subset proteins. Moreover, we integrated these proteomic data with existing mRNA data to derive robust cell-specific expression signatures with more than 400 differentially expressed proteins between subsets, forming a solid basis for investigation of subset-specific functions. We illustrated this by extracting subset identification markers and by demonstrating that pDCs lack caspase-1 and only express low levels of other inflammasome-related proteins. In accordance, pDCs were incapable of interleukin (IL)-1β secretion in response to ATP.
Graphical Abstract
Image 1
•We present a comprehensive quantitative proteome comparison of primary human DC subsets•Proteome comparison reveals many expression differences between DC subsets•We provide a resource to derive markers and examine subset functional specialization•pDCs lack caspase-1 and have a decreased inflammasome response
Worah et al. present a comprehensive quantitative proteomic comparison of four human blood-derived DC-like subsets. Through integration of proteomic and transcriptomic data, the authors derive expression signatures for each subset that provide a resource for study of subset functional specialization.
PMCID: PMC5039226  PMID: 27626665
4.  Intranodal vaccination with mRNA-optimized dendritic cells in metastatic melanoma patients 
Oncoimmunology  2015;4(8):e1019197.
Autologous dendritic cell (DC) therapy is an experimental cellular immunotherapy that is safe and immunogenic in patients with advanced melanoma. In an attempt to further improve the therapeutic responses, we treated 15 patients with melanoma, with autologous monocyte-derived immature DC electroporated with mRNA encoding CD40 ligand (CD40L), CD70 and a constitutively active TLR4 (caTLR4) together with mRNA encoding a tumor-associated antigen (TAA; respectively gp100 or tyrosinase). In addition, DC were pulsed with keyhole limpet hemocyanin (KLH) that served as a control antigen. Production of this DC vaccine with high cellular viability, high expression of co-stimulatory molecules and MHC class I and II and production of IL-12p70, was feasible in all patients. A vaccination cycle consisting of three vaccinations with up to 15×106 DC per vaccination at a biweekly interval, was repeated after 6 and 12 months in the absence of disease progression. mRNA-optimized DC were injected intranodally, because of low CCR7 expression on the DC, and induced de novo immune responses against control antigen. T cell responses against tyrosinase were detected in the skin-test infiltrating lymphocytes (SKIL) of two patients. One mixed tumor response and two durable tumor stabilizations were observed among 8 patients with evaluable disease at baseline. In conclusion, autologous mRNA-optimized DC can be safely administered intranodally to patients with metastatic melanoma but showed limited immunological responses against tyrosinase and gp100.
PMCID: PMC4570143  PMID: 26405571
DC vaccines; dendritic cell; immunotherapy; melanoma; mRNA electroporation
5.  Prophylactic vaccines are potent activators of monocyte-derived dendritic cells and drive effective anti-tumor responses in melanoma patients at the cost of toxicity 
Dendritic cell (DC)-based immunotherapy is explored worldwide in cancer patients, predominantly with DC matured with pro-inflammatory cytokines and prostaglandin E2. We studied the safety and efficacy of vaccination with monocyte-derived DC matured with a cocktail of prophylactic vaccines that contain clinical-grade Toll-like receptor ligands (BCG, Typhim, Act-HIB) and prostaglandin E2 (VAC-DC). Stage III and IV melanoma patients were vaccinated via intranodal injection (12 patients) or combined intradermal/intravenous injection (16 patients) with VAC-DC loaded with keyhole limpet hemocyanin (KLH) and mRNA encoding tumor antigens gp100 and tyrosinase. Tumor antigen-specific T cell responses were monitored in blood and skin-test infiltrating-lymphocyte cultures. Almost all patients mounted prophylactic vaccine- or KLH-specific immune responses. Both after intranodal injection and after intradermal/intravenous injection, tumor antigen-specific immune responses were detected, which coincide with longer overall survival in stage IV melanoma patients. VAC-DC induce local and systemic CTC grade 2 and 3 toxicity, which is most likely caused by BCG in the maturation cocktail. The side effects were self-limiting or resolved upon a short period of systemic steroid therapy. We conclude that VAC-DC can induce functional tumor-specific responses. Unfortunately, toxicity observed after vaccination precludes the general application of VAC-DC, since in DC maturated with prophylactic vaccines BCG appears to be essential in the maturation cocktail.
Electronic supplementary material
The online version of this article (doi:10.1007/s00262-016-1796-7) contains supplementary material, which is available to authorized users.
PMCID: PMC4779136  PMID: 26861670
Dendritic cells; Immunotherapy; Melanoma; Toll-like receptor ligands; Maturation; Prophylactic vaccines
6.  Ipilimumab administered to metastatic melanoma patients who progressed after dendritic cell vaccination 
Oncoimmunology  2016;5(8):e1201625.
Background: Ipilimumab has proven to be effective in metastatic melanoma patients. The purpose of this study was to determine the efficacy of ipilimumab in advanced melanoma patients who showed progressive disease upon experimental dendritic cell (DC) vaccination. Methods: Retrospective analysis of 48 stage IV melanoma patients treated with ipilimumab after progression upon DC vaccination earlier in their treatment. DC vaccination was given either as adjuvant treatment for stage III disease (n = 18) or for stage IV disease (n = 30). Ipilimumab (3 mg/kg) was administered every 3 weeks for up to 4 cycles. Results: Median time between progression upon DC vaccination and first gift of ipilimumab was 5.4 mo. Progression-free survival (PFS) rates for patients that received ipilimumab after adjuvant DC vaccination, and patients that received DC vaccination for stage IV melanoma, were 35% and 7% at 1 y and 35% and 3% at 2 y, while the median PFS was 2.9 mo and 3.1 mo, respectively. Median overall survival of patients pre-treated with adjuvant DC vaccination for stage III melanoma was not reached versus 8.0 mo (95% CI, 5.2–10.9) in the group pre-treated with DC vaccination for stage IV disease (HR of death, 0.36; p = 0.017). Grade 3 immune-related adverse events occurred in 19% of patients and one death (2%) was related to ipilimumab. Conclusions: Clinical responses to ipilimumab were found in a considerable number of advanced melanoma patients with progression after adjuvant DC vaccination for stage III disease, while the effect was very limited in patients who showed progression after DC vaccination for stage IV disease.
PMCID: PMC5007966  PMID: 27622070
Dendritic cell vaccination; immunotherapy; ipilimumab; melanoma
7.  Immune-related Adverse Events of Dendritic Cell Vaccination Correlate With Immunologic and Clinical Outcome in Stage III and IV Melanoma Patients 
The purpose of this study was to determine the toxicity profile of dendritic cell (DC) vaccination in stage III and IV melanoma patients, and to evaluate whether there is a correlation between side effects and immunologic and clinical outcome. This is a retrospective analysis of 82 stage III and 137 stage IV melanoma patients, vaccinated with monocyte-derived or naturally circulating autologous DCs loaded with tumor-associated antigens gp100 and tyrosinase. Median follow-up time was 54.3 months in stage III patients and 12.9 months in stage IV patients. Treatment-related adverse events occurred in 84% of patients; grade 3 toxicity was present in 3% of patients. Most common adverse events were flu-like symptoms (67%) and injection site reactions (50%), and both correlated with the presence of tetramer-positive CD8+ T cells (both P<0.001). In stage III melanoma patients experiencing flu-like symptoms, median overall survival (OS) was not reached versus 32.3 months in patients without flu-like symptoms (P=0.009); median OS in patients with an injection site reaction was not reached versus 53.7 months in patients without an injection site reaction (P<0.05). In stage IV melanoma patients (primary uveal and mucosal melanomas excluded), median OS in patients with or without flu-like symptoms was 13.1 versus 8.9 months, respectively (P=0.03); median OS in patients with an injection site reaction was 15.7 months versus 9.8 months in patients without an injection site reaction (P=0.003). In conclusion, DC vaccination is safe and tolerable and the occurrence of the immune-related side effects, such as flu-like symptoms and injection site reactions, correlates with immunologic and clinical outcome.
PMCID: PMC4902323  PMID: 27227325
dendritic cell vaccination; melanoma; immune-related adverse events; immune response
8.  Favorable overall survival in stage III melanoma patients after adjuvant dendritic cell vaccination 
Oncoimmunology  2015;5(1):e1057673.
Melanoma patients with regional metastatic disease are at high risk for recurrence and metastatic disease, despite radical lymph node dissection (RLND). We investigated the immunologic response and clinical outcome to adjuvant dendritic cell (DC) vaccination in melanoma patients with regional metastatic disease who underwent RLND with curative intent. In this retrospective study, 78 melanoma patients with regional lymph node metastasis who underwent RLND received autologous DCs loaded with gp100 and tyrosinase and were analyzed for functional tumor-specific T cell responses in skin-test infiltrating lymphocytes. The study shows that adjuvant DC vaccination in melanoma patients with regional lymph node metastasis is safe and induced functional tumor-specific T cell responses in 71% of the patients. The presence of functional tumor-specific T cells was correlated with a better 2-year overall survival (OS) rate. OS was significantly higher after adjuvant DC vaccination compared to 209 matched controls who underwent RLND without adjuvant DC vaccination, 63.6 mo vs. 31.0 mo (p = 0.018; hazard ratio 0.59; 95%CI 0.42–0.84). Five-year survival rate increased from 38% to 53% (p < 0.01). In summary, in melanoma patients with regional metastatic disease, who are at high risk for recurrence and metastatic disease after RLND, adjuvant DC vaccination is well tolerated. It induced functional tumor-specific immune responses in the majority of patients and these were related to clinical outcome. OS was significantly higher compared to matched controls. A randomized clinical trial is needed to prospectively validate the efficacy of DC vaccination in the adjuvant setting.
PMCID: PMC4760342  PMID: 26942068
adjuvant therapy; dendritic cell; immunotherapy; melanoma; vaccination
9.  Adjuvant dendritic cell vaccination induces tumor-specific immune responses in the majority of stage III melanoma patients 
Oncoimmunology  2016;5(7):e1191732.
Purpose: To determine the effectiveness of adjuvant dendritic cell (DC) vaccination to induce tumor-specific immunological responses in stage III melanoma patients.
Experimental design: Retrospective analysis of stage III melanoma patients, vaccinated with autologous monocyte-derived DC loaded with tumor-associated antigens (TAA) gp100 and tyrosinase after radical lymph node dissection. Skin-test infiltrating lymphocytes (SKILs) obtained from delayed-type hypersensitivity skin-test biopsies were analyzed for the presence of TAA-specific CD8+ T cells by tetrameric MHC-peptide complexes and by functional TAA-specific T cell assays, defined by peptide-recognition (T2 cells) and/or tumor-recognition (BLM and/or MEL624) with specific production of Th1 cytokines and no Th2 cytokines.
Results: Ninety-seven patients were analyzed: 21 with stage IIIA, 34 with stage IIIB, and 42 had stage IIIC disease. Tetramer-positive CD8+ T cells were present in 68 patients (70%), and 24 of them showed a response against all 3 epitopes tested (gp100:154–162, gp100:280–288, and tyrosinase:369–377) at any point during vaccinations. A functional T cell response was found in 62 patients (64%). Rates of peptide-recognition of gp100:154–162, gp100:280–288, and tyrosinase:369–377 were 40%, 29%, and 45%, respectively. Median recurrence-free survival and distant metastasis-free survival of the whole study population were 23.0 mo and 36.8 mo, respectively.
Conclusions: DC vaccination induces a functional TAA-specific T cell response in the majority of stage III melanoma patients, indicating it is more effective in stage III than in stage IV melanoma patients. Furthermore, performing multiple cycles of vaccinations enhances the chance of a broader immune response.
PMCID: PMC5006921  PMID: 27622047
Dendritic cell; DTH; immune response; skin-infiltrating lymphocytes; stage III melanoma; vaccination
10.  Tetraspanin CD37 protects against the development of B cell lymphoma 
Worldwide, B cell non-Hodgkin lymphoma is the most common hematological malignancy and represents a substantial clinical problem. The molecular events that lead to B cell lymphoma are only partially defined. Here, we have provided evidence that deficiency of tetraspanin superfamily member CD37, which is important for B cell function, induces the development of B cell lymphoma. Mice lacking CD37 developed germinal center–derived B cell lymphoma in lymph nodes and spleens with a higher incidence than Bcl2 transgenic mice. We discovered that CD37 interacts with suppressor of cytokine signaling 3 (SOCS3); therefore, absence of CD37 drives tumor development through constitutive activation of the IL-6 signaling pathway. Moreover, animals deficient for both Cd37 and Il6 were fully protected against lymphoma development, confirming the involvement of the IL-6 pathway in driving tumorigenesis. Loss of CD37 on neoplastic cells in patients with diffuse large B cell lymphoma (DLBCL) directly correlated with activation of the IL-6 signaling pathway and with worse progression-free and overall survival. Together, this study identifies CD37 as a tumor suppressor that directly protects against B cell lymphomagenesis and provides a strong rationale for blocking the IL-6 pathway in patients with CD37– B cell malignancies as a possible therapeutic intervention.
PMCID: PMC4731177  PMID: 26784544
11.  Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses 
Oncoimmunology  2015;5(1):e1068493.
Antitumor immunity can be enhanced by the coordinated release and delivery of antigens and immune-stimulating agents to antigen-presenting cells via biodegradable vaccine carriers. So far, encapsulation of TLR ligands and tumor-associated antigens augmented cytotoxic T cell (CTLs) responses. Here, we compared the efficacy of the invariant NKT (iNKT) cell agonist α-galactosylceramide (α-GalCer) and TLR ligands (R848 and poly I:C) as an adjuvant for the full length ovalbumin (OVA) in PLGA nanoparticles. We observed that OVA+α-GalCer nanoparticles (NP) are superior over OVA+TLR-L NP in generating and stimulating antigen-specific cytotoxic T lymphocytes without the need for CD4+ T cell help. Not only a 4-fold higher induction of antigen-specific T cells was observed, but also a more profound IFN-γ secretion was obtained by the addition α-GalCer. Surprisingly, we observed that mixtures of OVA containing NP with α-GalCer were ineffective, demonstrating that co-encapsulation of both α-GalCer and antigen within the same nanoparticle is essential for the observed T cell responses. Moreover, a single immunization with OVA+α-GalCer NP provided substantial protection from tumor formation and even delayed the growth of already established tumors, which coincided with a prominent and enhanced antigen-specific CD8+ T cell infiltration. The provided evidence on the advantage of antigen and α-GalCer coencapsulation should be considered in the design of future nanoparticle vaccines for therapeutic purposes.
PMCID: PMC4760331  PMID: 26942088
CTL response; melanoma; nanoparticle; PLGA; α-GalCer
12.  Design of a highly selective quenched activity-based probe and its application in dual color imaging studies of cathepsin S activity localization 
The cysteine cathepsins are a group of 11 proteases whose function was originally believed to be the degradation of endocytosed material with a high degree of redundancy. However, it has become clear that these enzymes are also important regulators of both health and disease. Thus, selective tools that can discriminate between members of this highly related class of enzymes will be critical to further delineate the unique biological functions of individual cathepsins. Here we present the design and synthesis of a near-infrared quenched activity-based probe (qABP) that selectively targets cathepsin S which is highly expressed in immune cells. Importantly, this high degree of selectivity is retained both in vitro and in vivo. In combination with a new green-fluorescent pan-reactive cysteine cathepsin qABP we performed dual color labeling studies in bone marrow derived immune cells and identified vesicles containing exclusively cathepsin S activity. This observation demonstrates the value of our complimentary cathepsin probes and provides evidence for the existence of specific localization of cathepsin S activity in dendritic cells.
Graphical abstract
PMCID: PMC4747655  PMID: 25785540
13.  Lipid peroxidation causes endosomal antigen release for cross-presentation 
Scientific Reports  2016;6:22064.
Dendritic cells (DCs) present foreign antigen in major histocompatibility complex (MHC) class I molecules to cytotoxic T cells in a process called cross-presentation. An important step in this process is the release of antigen from the lumen of endosomes into the cytosol, but the mechanism of this step is still unclear. In this study, we show that reactive oxygen species (ROS) produced by the NADPH-oxidase complex NOX2 cause lipid peroxidation, a membrane disrupting chain-reaction, which in turn results in antigen leakage from endosomes. Antigen leakage and cross-presentation were inhibited by blocking ROS production or scavenging radicals and induced when using a ROS-generating photosensitizer. Endosomal antigen release was impaired in DCs from chronic granulomatous disease (CGD) patients with dysfunctional NOX2. Thus, NOX2 induces antigen release from endosomes for cross-presentation by direct oxidation of endosomal lipids. This constitutes a new cellular function for ROS in regulating immune responses against pathogens and cancer.
PMCID: PMC4764948  PMID: 26907999
14.  Proteome Based Construction of the Lymphocyte Function-Associated Antigen 1 (LFA-1) Interactome in Human Dendritic Cells 
PLoS ONE  2016;11(2):e0149637.
The β2-integrin lymphocyte function-associated antigen 1 (LFA-1) plays an important role in the migration, adhesion and intercellular communication of dendritic cells (DCs). During the differentiation of human DCs from monocyte precursors, LFA-1 ligand binding capacity is completely lost, even though its expression levels were remained constant. Yet LFA-1-mediated adhesive capacity on DCs can be regained by exposing DCs to the chemokine CCL21, suggesting a high degree of regulation of LFA-1 activity during the course of DC differentiation. The molecular mechanisms underlying this regulation of LFA-1 function in DCs, however, remain elusive. To get more insight we attempted to identify specific LFA-1 binding partners that may play a role in regulating LFA-1 activity in DCs. We used highly sensitive label free quantitative mass-spectrometry to identify proteins co-immunoprecipitated (co-IP) with LFA-1 from ex vivo generated DCs. Among the potential binding partners we identified not only established components of integrin signalling pathways and cytoskeletal proteins, but also several novel LFA-1 binding partners including CD13, galectin-3, thrombospondin-1 and CD44. Further comparison to the LFA-1 interaction partners in monocytes indicated that DC differentiation was accompanied by an overall increase in LFA-1 associated proteins, in particular cytoskeletal, signalling and plasma membrane (PM) proteins. The here presented LFA-1 interactome composed of 78 proteins thus represents a valuable resource of potential regulators of LFA-1 function during the DC lifecycle.
PMCID: PMC4758637  PMID: 26889827
15.  A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets 
Mediators of Inflammation  2016;2016:3605643.
Dendritic cells (DCs) are central players of immune responses; they become activated upon infection or inflammation and migrate to lymph nodes, where they can initiate an antigen-specific immune response by activating naive T cells. Two major types of naturally occurring DCs circulate in peripheral blood, namely, myeloid and plasmacytoid DCs (pDCs). Myeloid DCs (mDCs) can be subdivided based on the expression of either CD1c or CD141. These human DC subsets differ in surface marker expression, Toll-like receptor (TLR) repertoire, and transcriptional profile, suggesting functional differences between them. Here, we directly compared the capacity of human blood mDCs and pDCs to activate and polarize CD4+ T cells. CD141+ mDCs show an overall more mature phenotype over CD1c+ mDC and pDCs; they produce less IL-10 and more IL-12 than CD1c+ mDCs. Despite these differences, all subsets can induce the production of IFN-γ in naive CD4+ T cells. CD1c+ and CD141+ mDCs especially induce a strong T helper 1 profile. Importantly, naive CD4+ T cells are not polarized towards regulatory T cells by any subset. These findings further establish all three human blood DCs—despite their differences—as promising candidates for immunostimulatory effectors in cancer immunotherapy.
PMCID: PMC4761397  PMID: 27057096
16.  TRPM7 Regulates Myosin IIA Filament Stability and Protein Localization by Heavy Chain Phosphorylation 
Journal of molecular biology  2008;378(4):790-803.
Deregulation of myosin II-based contractility contributes to the pathogenesis of human diseases, such as cancer, which underscores the necessity for tight spatial and temporal control of myosin II activity. Recently, we demonstrated that activation of the mammalian α-kinase TRPM7 inhibits myosin II-based contractility in a Ca2+- and kinase-dependent manner. However, the molecular mechanism is poorly defined. Here, we demonstrate that TRPM7 phosphorylates the COOH-termini of both mouse and human myosin IIA heavy chains—the COOH-terminus being a region that is critical for filament stability. Phosphorylated residues were mapped to Thr1800, Ser1803 and Ser1808. Mutation of these residues to alanine and that to aspartic acid lead to an increase and a decrease, respectively, in myosin IIA incorporation into the actomyosin cytoskeleton and accordingly affect subcellular localization. In conclusion, our data demonstrate that TRPM7 regulates myosin IIA filament stability and localization by phosphorylating a short stretch of amino acids within the α-helical tail of the myosin IIA heavy chain.
PMCID: PMC4541798  PMID: 18394644
actin; myosin IIA; cytoskeleton; phosphorylation; TRPM7
17.  Long-lasting multifunctional CD8+ T cell responses in end-stage melanoma patients can be induced by dendritic cell vaccination 
Oncoimmunology  2015;5(1):e1067745.
Cytotoxic T cells are considered crucial for antitumor immunity and their induction is the aim of various immunotherapeutic strategies. High frequencies of tumor-specific CD8+ T cells alone, however, are no guarantee for long-term tumor control. Here, we analyzed the functionality of tumor-specific CD8+ T cells in melanoma patients upon dendritic cell vaccination by measuring multiple T cell effector functions considered crucial for anticancer immunity, including the expression of pro-inflammatory cytokines, chemokines and cytotoxic markers (IFNγ, TNFα, IL-2, CCL4, CD107a). We identified small numbers of multifunctional (polyfunctional) tumor-specific CD8+ T cells in several patients and dendritic cell therapy was able to improve the functionality of these pre-existing tumor-specific CD8+ T cells. Generated multifunctional CD8+ T cell responses could persist for up to ten years and within the same patient functionality could vary greatly for the different vaccination antigens. Importantly, after one cycle of DC vaccination highly functional CD8+ T cells were only detected in patients displaying prolonged overall survival. Our results shed light on the dynamics of multifunctional tumor-specific CD8+ T cells during metastatic melanoma and reveal a new feature of dendritic cell vaccination in vivo.
PMCID: PMC4760336  PMID: 26942087
Cancer; dendritic cell vaccination; immunotherapy; melanoma; multifunctional T cells; polyfunctional T cells; T cell function
18.  Aiming to immune elimination of ovarian cancer stem cells 
World Journal of Stem Cells  2013;5(4):149-162.
Ovarian cancer accounts for only 3% of all cancers in women, but it causes more deaths than any other gynecologic cancer. Treatment with chemotherapy and cytoreductive surgery shows a good response to the therapy. However, in a large proportion of the patients the tumor grows back within a few years. Cancer stem cells, that are less responsive to these treatments, are blamed for this recurrence of disease. Immune therapy either cellular or humoral is a novel concept to treat cancer. It is based on the notice that immune cells invade the tumor. However, the tumor invest heavily to escape from immune elimination by recruiting several immune suppressive mechanisms. These processes are normally in place to limit excessive immune activation and prevent autoimmune phenomena. Here, we discuss current knowledge about the immune (suppressive) status in ovarian cancer. Moreover, we discuss the immunological targets of ovarian cancer stem cells.
PMCID: PMC3812519  PMID: 24179603
Ovarian cancer; Cancer stem cell; Immune therapy; Immune suppression; Tumor microenvironment
19.  The tetraspanin web revisited by super-resolution microscopy 
Scientific Reports  2015;5:12201.
The spatial organization of membrane proteins in the plasma membrane is critical for signal transduction, cell communication and membrane trafficking. Tetraspanins organize functional higher-order protein complexes called ‘tetraspanin-enriched microdomains (TEMs)’ via interactions with partner molecules and other tetraspanins. Still, the nanoscale organization of TEMs in native plasma membranes has not been resolved. Here, we elucidated the size, density and distribution of TEMs in the plasma membrane of human B cells and dendritic cells using dual color stimulated emission depletion (STED) microscopy. We demonstrate that tetraspanins form individual nanoclusters smaller than 120 nm and quantified that a single tetraspanin CD53 cluster contains less than ten CD53 molecules. CD53 and CD37 domains were adjacent to and displayed only minor overlap with clusters containing tetraspanins CD81 or CD82. Moreover, CD53 and CD81 were found in closer proximity to their partners MHC class II and CD19 than to other tetraspanins. Although these results indicate that tetraspanin domains are adjacently positioned in the plasma membrane, they challenge the current view of the tetraspanin web of multiple tetraspanin species organized into a single domain. This study increases the molecular understanding of TEMs at the nanoscale level which is essential for comprehending tetraspanin function in cell biology.
PMCID: PMC4505338  PMID: 26183063
20.  Cord Blood Mesenchymal Stem Cells Suppress DC-T Cell Proliferation via Prostaglandin B2 
Stem Cells and Development  2014;23(14):1582-1593.
Immune suppression is a very stable property of multipotent stromal cells also known as mesenchymal stem cells (MSCs). All cell lines tested showed robust immune suppression not affected by a long culture history. Several mechanisms were described to account for this capability. Since several of the described mechanisms were not causing the immune suppression, the expression pattern of cord-blood-derived MSCs by microarray experiments was determined. Dendritic cells cocultured with cord blood MSCs were compared with cord blood MSCs. Putative immune suppressive candidates were tested to explain this inhibition. We find that cord blood MSCs themselves are hardly immunogenic as tested with allogeneic T-cells. Dendritic cells cocultured with second-party T-cells evoked abundant proliferation that was inhibited by third-party cord blood MSCs. Optimal inhibition was seen with one cord blood MSC for every dendritic cell. Blocking human leukocyte antigen G only saw partial recovery of proliferation. Several cytokines, gangliosides, enzymes like arginase, NO synthase, and indole amine 2,3-dioxygenase as well as the induction of Treg were not involved in the inhibition. The inhibiting moiety was identified as prostaglandin B2 by lipid metabolite analysis of the culture supernatant and confirmed with purified prostaglandin B2.
PMCID: PMC4085994  PMID: 24649980
21.  Naturally circulating dendritic cells to vaccinate cancer patients 
Oncoimmunology  2013;2(3):e23431.
Dendritic cell-based immunotherapy is a promising strategy against cancer that appears to be feasible, safe and to induce potent tumor-specific immune responses. The use of naturally circulating dendritic cells (DCs), rather than cultured monocyte-derived DCs, might constitute the next logical step to translate anticancer immune responses into long-lasting clinical benefits.
PMCID: PMC3661171  PMID: 23802086
cancer immunotherapy; dendritic-cell targeting; dendritic-cell vaccination; myeloid dendritic cells; plasmacytoid dendritic cells
22.  Multispectral imaging reveals the tissue distribution of tetraspanins in human lymphoid organs 
Histochemistry and Cell Biology  2015;144(2):133-146.
Multispectral imaging is a novel microscopy technique that combines imaging with spectroscopy to obtain both quantitative expression data and tissue distribution of different cellular markers. Tetraspanins CD37 and CD53 are four-transmembrane proteins involved in cellular and humoral immune responses. However, comprehensive immunohistochemical analyses of CD37 and CD53 in human lymphoid organs have not been performed so far. We investigated CD37 and CD53 protein expression on primary human immune cell subsets in blood and in primary and secondary lymphoid organs. Both tetraspanins were prominently expressed on antigen-presenting cells, with highest expression of CD37 on B lymphocytes. Analysis of subcellular distribution showed presence of both tetraspanins on the plasma membrane and on endosomes. In addition, CD53 was also present on lysosomes. Quantitative analysis of expression and localization of CD37 and CD53 on lymphocytes within lymphoid tissues by multispectral imaging revealed high expression of both tetraspanins on CD20+ cells in B cell follicles in human spleen and appendix. CD3+ T cells within splenic T cell zones expressed lower levels of CD37 and CD53 compared to T cells in the red pulp of human spleen. B cells in human bone marrow highly expressed CD37, whereas the expression of CD53 was low. In conclusion, we demonstrate differential expression of CD37 and CD53 on primary human immune cells, their subcellular localization and their quantitative distribution in human lymphoid organs. This study provides a solid basis for better insight into the function of tetraspanins in the human immune response.
Electronic supplementary material
The online version of this article (doi:10.1007/s00418-015-1326-2) contains supplementary material, which is available to authorized users.
PMCID: PMC4522275  PMID: 25952155
Multispectral imaging; Tetraspanin; CD37; CD53; Immune system
23.  Clinical Implications of Co-Inhibitory Molecule Expression in the Tumor Microenvironment for DC Vaccination: A Game of Stop and Go 
The aim of therapeutic dendritic cell (DC) vaccines in cancer immunotherapy is to activate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the interaction of the T cell receptor with a cognate major-histocompatibility complex-peptide complex. Although initiated by antigen engagement, it is the complex balance between co-stimulatory and co-inhibitory signals on DCs that results in T cell activation or tolerance. Even when already activated, tumor-specific T cells can be neutralized by the expression of co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the tumor microenvironment are major factors currently hampering the application of DC vaccination. In this review, we discuss recent data regarding the essential and complex role of co-inhibitory molecules in regulating the immune response within the tumor microenvironment. In particular, possible therapeutic intervention strategies aimed at reversing or neutralizing suppressive networks within the tumor microenvironment will be emphasized. Importantly, blocking co-inhibitory molecule signaling, often referred to as immune checkpoint blockade, does not necessarily lead to an effective activation of tumor-specific T cells. Therefore, combination of checkpoint blockade with other immune potentiating therapeutic strategies, such as DC vaccination, might serve as a synergistic combination, capable of reversing effector T cells immunosuppression while at the same time increasing the efficacy of T cell-mediated immunotherapies. This will ultimately result in long-term anti-tumor immunity.
PMCID: PMC3847559  PMID: 24348481
DC vaccination; tumor microenvironment; checkpoint blockade; tumor-specific T cells; cancer treatment
25.  Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice 
The Journal of Clinical Investigation  2011;121(8):3100-3108.
Tumor microenvironments feature immune inhibitory mechanisms that prevent T cells from generating effective antitumor immune responses. Therapeutic interventions aimed at disrupting these inhibitory mechanisms have been shown to enhance antitumor immunity, but they lack direct cytotoxic effects. Here, we investigated the effect of cytotoxic cancer chemotherapeutics on immune inhibitory pathways. We observed that exposure to platinum-based chemotherapeutics markedly reduced expression of the T cell inhibitory molecule programmed death receptor-ligand 2 (PD-L2) on both human DCs and human tumor cells. Downregulation of PD-L2 resulted in enhanced antigen-specific proliferation and Th1 cytokine secretion as well as enhanced recognition of tumor cells by T cells. Further analysis revealed that STAT6 controlled downregulation of PD-L2. Consistent with these data, patients with STAT6-expressing head and neck cancer displayed enhanced recurrence-free survival upon treatment with cisplatin-based chemoradiation compared with patients with STAT6-negative tumors, demonstrating the clinical relevance of platinum-induced STAT6 modulation. We therefore conclude that platinum-based anticancer drugs can enhance the immunostimulatory potential of DCs and decrease the immunosuppressive capability of tumor cells. This dual action of platinum compounds may extend their therapeutic application in cancer patients and provides a rationale for their use in combination with immunostimulatory compounds.
PMCID: PMC3148725  PMID: 21765211

Results 1-25 (58)