Search tips
Search criteria

Results 1-3 (3)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  The Oxysterol 24(S),25-Epoxycholesterol Attenuates Human Smooth Muscle–Derived Foam Cell Formation Via Reduced Low-Density Lipoprotein Uptake and Enhanced Cholesterol Efflux 
Foam cell formation by intimal smooth muscle cells (SMCs) inhibits the elaboration of extracellular matrix, which is detrimental to plaque stabilization. In the present study, we examined the lipoproteins and receptors involved in human SMC foam cell formation and investigated the ability of 24(S),25-epoxycholesterol [24(S),25-EC], an oxysterol agonist of the liver X receptor, to attenuate SMC foam cell formation.
Methods and Results
Incubation of human internal thoracic SMCs with atherogenic lipoproteins demonstrated that low-density lipoprotein (LDL), but not oxidized or acetylated LDL, was the primary lipoprotein taken up, resulting in marked cholesteryl ester deposition (6-fold vs 1.8-fold; P<0.05; n=4). Exposure of SMCs to exogenous or endogenously synthesized 24(S),25-EC attenuated LDL uptake (−90% and −47% respectively; P<0.05; n=3) through decreased sterol regulatory element–binding protein-2 expression (−30% and −17%, respectively; P<0.001; n=3), decreased LDL receptor expression (−75% and −40%, respectively; P<0.05; n=3) and increased liver X receptor–mediated myosin regulatory light chain interacting protein expression (7- and 3-fold, respectively; P<0.05; n=4). Furthermore, exogenous 24(S),25-EC increased adenosine triphosphate–binding cassettes A1– and G1–mediated cholesterol efflux to apolipoprotein AI (1.9-fold; P<0.001; n=5) and high-density lipoprotein3 (1.3-fold; P<0.05; n=5). 24(S),25-EC, unlike a nonsteroidal liver X receptor agonist, T0901317, did not stimulate sterol regulatory element–binding protein-1c–mediated fatty acid synthesis or triglyceride accumulation. 24(S),25-EC preserved the assembly of fibronectin and type I collagen by SMCs.
The oxysterol 24(S),25-EC prevented foam cell formation in human SMCs by attenuation of LDL receptor–mediated LDL uptake and stimulation of cholesterol efflux, restoring the elaboration of extracellular matrix. In contrast to T0901317, 24(S),25-EC prevented the development of a triglyceride-rich foam cell phenotype. (J Am Heart Assoc. 2012;1:e000810 doi: 10.1161/JAHA.112.000810.)
PMCID: PMC3487330  PMID: 23130136
vascular smooth muscle cell; lipoproteins; oxysterol; liver X receptor; cholesterol efflux
2.  Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice With Diet-Induced Insulin Resistance 
Diabetes  2011;60(5):1446-1457.
Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis.
Lipoprotein secretion was determined in HepG2 cells incubated with nobiletin or insulin. mRNA abundance was evaluated by quantitative real-time PCR, and Western blotting was used to demonstrate activation of cell signaling pathways. In LDL receptor–deficient mice (Ldlr−/−) fed a Western diet supplemented with nobiletin, metabolic parameters, gene expression, fatty acid oxidation, glucose homeostasis, and energy expenditure were documented. Atherosclerosis was quantitated by histological analysis.
In HepG2 cells, activation of mitogen-activated protein kinase-extracellular signal–related kinase signaling by nobiletin or insulin increased LDLR and decreased MTP and DGAT1/2 mRNA, resulting in marked inhibition of apoB100 secretion. Nobiletin, unlike insulin, did not induce phosphorylation of the insulin receptor or insulin receptor substrate-1 and did not stimulate lipogenesis. In fat-fed Ldlr−/− mice, nobiletin attenuated dyslipidemia through a reduction in VLDL-triglyceride (TG) secretion. Nobiletin prevented hepatic TG accumulation, increased expression of Pgc1α and Cpt1α, and enhanced fatty acid β-oxidation. Nobiletin did not activate any peroxisome proliferator–activated receptor (PPAR), indicating that the metabolic effects were PPAR independent. Nobiletin increased hepatic and peripheral insulin sensitivity and glucose tolerance and dramatically attenuated atherosclerosis in the aortic sinus.
Nobiletin provides insight into treatments for dyslipidemia and atherosclerosis associated with insulin-resistant states.
PMCID: PMC3292317  PMID: 21471511
3.  Naringenin Prevents Dyslipidemia, Apolipoprotein B Overproduction, and Hyperinsulinemia in LDL Receptor–Null Mice With Diet-Induced Insulin Resistance 
Diabetes  2009;58(10):2198-2210.
The global epidemic of metabolic syndrome and its complications demands rapid evaluation of new and accessible interventions. Insulin resistance is the central biochemical disturbance in the metabolic syndrome. The citrus-derived flavonoid, naringenin, has lipid-lowering properties and inhibits VLDL secretion from cultured hepatocytes in a manner resembling insulin. We evaluated whether naringenin regulates lipoprotein production and insulin sensitivity in the context of insulin resistance in vivo.
LDL receptor–null (Ldlr−/−) mice fed a high-fat (Western) diet (42% calories from fat and 0.05% cholesterol) become dyslipidemic, insulin and glucose intolerant, and obese. Four groups of mice (standard diet, Western, and Western plus 1% or 3% wt/wt naringenin) were fed ad libitum for 4 weeks. VLDL production and parameters of insulin and glucose tolerance were determined.
We report that naringenin treatment of Ldlr−/− mice fed a Western diet corrected VLDL overproduction, ameliorated hepatic steatosis, and attenuated dyslipidemia without affecting caloric intake or fat absorption. Naringenin 1) increased hepatic fatty acid oxidation through a peroxisome proliferator–activated receptor (PPAR) γ coactivator 1α/PPARα-mediated transcription program; 2) prevented sterol regulatory element–binding protein 1c–mediated lipogenesis in both liver and muscle by reducing fasting hyperinsulinemia; 3) decreased hepatic cholesterol and cholesterol ester synthesis; 4) reduced both VLDL-derived and endogenously synthesized fatty acids, preventing muscle triglyceride accumulation; and 5) improved overall insulin sensitivity and glucose tolerance.
Thus, naringenin, through its correction of many of the metabolic disturbances linked to insulin resistance, represents a promising therapeutic approach for metabolic syndrome.
PMCID: PMC2750228  PMID: 19592617

Results 1-3 (3)