PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (52)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
1.  Identification of the Key Differential Transcriptional Responses of Human Whole Blood Following TLR2 or TLR4 Ligation In-Vitro 
PLoS ONE  2014;9(5):e97702.
The use of human whole blood for transcriptomic analysis has potential advantages over the use of isolated immune cells for studying the transcriptional response to pathogens and their products. Whole blood stimulation can be carried out in a laboratory without the expertise or equipment to isolate immune cells from blood, with the added advantage of being able to undertake experiments using very small volumes of blood. Toll like receptors (TLRs) are a family of pattern recognition receptors which recognise highly conserved microbial products. Using the TLR2 ligand (Pam3CSK4) and the TLR4 ligand (LPS), human whole blood was stimulated for 0, 1, 3, 6, 12 or 24 hours at which times mRNA was isolated and a comparative microarray was undertaken. A common NFκB transcriptional programme was identified following both TLR2 and TLR4 ligation which peaked at between 3 to 6 hours including upregulation of many of the NFκB family members. In contrast an interferon transcriptional response was observed following TLR4 but not TLR2 ligation as early as 1 hour post stimulation and peaking at 6 hours. These results recapitulate the findings observed in previously published studies using isolated murine and human myeloid cells indicating that in vitro stimulated human whole blood can be used to interrogate the early transcriptional kinetic response of innate cells to TLR ligands. Our study demonstrates that a transcriptomic analysis of mRNA isolated from human whole blood can delineate both the temporal response and the key transcriptional differences following TLR2 and TLR4 ligation.
doi:10.1371/journal.pone.0097702
PMCID: PMC4026482  PMID: 24842522
2.  Systems Scale Interactive Exploration Reveals Quantitative and Qualitative Differences in Response to Influenza and Pneumococcal Vaccines 
Immunity  2013;38(4):831-844.
SUMMARY
Systems immunology approaches were employed to investigate innate and adaptive immune responses to influenza and pneumococcal vaccines. These two non-live vaccines show different magnitudes of transcriptional responses at different time points after vaccination. Software solutions were developed to explore correlates of vaccine efficacy measured as antibody titers at day 28. These enabled a further dissection of transcriptional responses. Thus, the innate response, measured within hours in the peripheral blood, was dominated by an interferon transcriptional signature after influenza vaccination and by an inflammation signature after pneumococcal vaccination. Day 7 plasmablast responses induced by both vaccines was more pronounced after pneumococcal vaccination. Together, these results suggest that comparing global immune responses elicited by different vaccines will be critical to our understanding of the immune mechanisms underpinning successful vaccination.
doi:10.1016/j.immuni.2012.12.008
PMCID: PMC3681204  PMID: 23601689
3.  Transforming Growth Factor β Signaling Controls Activities of Human Intestinal CD8+T Suppressor Cells 
Gastroenterology  2012;144(3):601-612.e1.
BACKGROUND & AIMS
In healthy individuals, interactions between intestinal epithelial cells and lamina propria lymphocytes give rise to a population of CD8+ T cells with suppressor functions (Ts cells). Disruption of Ts cell activities can lead to mucosal inflammation. We investigated what factors were required for expansion of the Ts cell population or loss of their activity in patients with Crohn’s disease (CD).
METHODS
We developed a method to generate Ts cell lines from freshly isolated lamina propria lymphocytes from patients with ulcerative colitis (UC), patients with CD, or healthy individuals (controls). Cells were stimulated with a monoclonal antibody against CD3, interleukin (IL)-7, and IL-15. After 14 days in culture, CD8+T cells were purified and cultured with IL-7 and IL-15. The resulting Ts cells were analyzed for suppressor activity, expression of surface markers, and cytokine secretion profiles. RNA was isolated from the 3 groups of Ts cells and used in microarray analyses.
RESULTS
Ts cells from patients with UC and controls suppressed proliferation of CD4+ T cells; the suppression required cell contact. In contrast, Ts cells from patients with CD had a reduced capacity to suppress CD4+ T-cell proliferation. The difference in suppressive ability was not associated with surface or intracytoplasmic markers or secretion of cytokines. Microarray analysis identified changes in expression of genes regulated by transforming growth factor (TGF)-β that were associated with the suppressive abilities of Ts cells. We found that TGF-β or supernatants from Ts cells of patients with CD reduced the suppressor activity of control Ts cells.
CONCLUSIONS
Ts cells isolated from patients with CD have a reduced ability to suppress proliferation of CD4+T cells compared with control Ts cells. TGF-β signaling reduces the suppressor activity of Ts cells.
doi:10.1053/j.gastro.2012.12.001
PMCID: PMC3967796  PMID: 23232296
Regulatory T Cells; Treg Cells; Immune Regulation; Inflammatory Bowel Disease
4.  A transcriptomic reporter assay employing neutrophils to measure immunogenic activity of septic patients’ plasma 
Background
There are diverse molecules present in blood plasma that regulate immune functions and also present a potential source of disease biomarkers and therapeutic targets. Genome-wide profiling has become a powerful method for assessing immune responses on a systems scale, but technologies that can measure the plasma proteome still face considerable challenges. An alternative approach to direct proteome assessment is to measure transcriptome responses in reporter cells exposed in vitro to plasma. In this report we describe such a “transcriptomic reporter assay” to assess plasma from patients with sepsis, which is a common and severe systemic infectious process for which physicians lack efficient diagnostic or prognostic markers.
Methods
Plasma samples collected from patients with culture-confirmed bacterial sepsis and uninfected healthy controls were used to stimulate three separate cell types – neutrophils, peripheral blood mononuclear cells, and monocyte-derived dendritic cells. Whole genome microarrays were generated from stimulated cells to assess transcriptional responses. Unsupervised analysis and enriched functional networks were evaluated for each cell type. Principal component analyses were used to assess variability in responses. A random K-nearest neighbor – feature selection algorithm was used to identify markers predictive of sepsis severity, which were then validated in an independent data set.
Results
Neutrophils demonstrated the most distinct response to plasma from septic patients with 709 genes showing altered expression profiles, many of which are involved in established immunologic pathways. The amplitude of the neutrophil transcriptomic response was shown to be correlated with sepsis severity in two independent sets of patients comprised of 64 total septic patients. A subset of 30 transcripts selected using one set of patients was demonstrated to have a high degree of accuracy (82-90%) in predicting sepsis severity and outcomes in the other independent set. This subset included several genes previously established in sepsis pathogenesis as well as novel genes.
Conclusions
These results demonstrate both the suitability and potential clinical relevance of a neutrophil reporter assay for studying plasma, in this case from septic patients. The distinctive transcriptional signature we found could potentially help predict severity of disease and guide treatment. Our findings also shed new light on mechanisms of immune dysregulation in sepsis.
doi:10.1186/1479-5876-12-65
PMCID: PMC4007645  PMID: 24612859
Transcriptomic reporter assay; Sepsis; Plasma; Microarray; Systems immunology
5.  Haploinsufficiency at the human IFNGR2 locus contributes to mycobacterial disease 
Human Molecular Genetics  2012;22(4):769-781.
Mendelian susceptibility to mycobacterial diseases (MSMD) is a rare syndrome, the known genetic etiologies of which impair the production of, or the response to interferon-gamma (IFN-γ). We report here a patient (P1) with MSMD whose cells display mildly impaired responses to IFN-γ, at levels, however, similar to those from MSMD patients with autosomal recessive (AR) partial IFN-γR2 or STAT1 deficiency. Whole-exome sequencing (WES) and Sanger sequencing revealed only one candidate variation for both MSMD-causing and IFN-γ-related genes. P1 carried a heterozygous frame-shift IFNGR2 mutation inherited from her father. We show that the mutant allele is intrinsically loss-of-function and not dominant-negative, suggesting haploinsufficiency at the IFNGR2 locus. We also show that Epstein-Barr virus transformed B lymphocyte cells from 10 heterozygous relatives of patients with AR complete IFN-γR2 deficiency respond poorly to IFN-γ, in some cases as poorly as the cells of P1. Naive CD4+ T cells and memory IL-4-producing T cells from these individuals also responded poorly to IFN-γ, whereas monocytes and monocyte-derived macrophages (MDMs) did not. This is consistent with the lower levels of expression of IFN-γR2 in lymphoid than in myeloid cells. Overall, MSMD in this patient is probably due to autosomal dominant (AD) IFN-γR2 deficiency, resulting from haploinsufficiency, at least in lymphoid cells. The clinical penetrance of AD IFN-γR2 deficiency is incomplete, possibly due, at least partly, to the variability of cellular responses to IFN-γ in these individuals.
doi:10.1093/hmg/dds484
PMCID: PMC3554203  PMID: 23161749
6.  fundTPL-2 – ERK1/2 Signaling Promotes Host Resistance against Intracellular Bacterial Infection by Negative Regulation of Type I Interferon Production3 
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains a leading cause of mortality and morbidity worldwide, causing approximately 1.4 million deaths per year. Key immune components for host protection during tuberculosis include the cytokines IL-12, IL-1 and TNF-α, as well as IFN-γ and CD4+ Th1 cells. However, immune factors determining whether individuals control infection or progress to active tuberculosis are incompletely understood. Excess amounts of type I interferon have been linked to exacerbated disease during tuberculosis in mouse models and to active disease in patients, suggesting tight regulation of this family of cytokines is critical to host resistance. In addition, the immunosuppressive cytokine IL-10 is known to inhibit the immune response to Mtb in murine models through the negative regulation of key pro-inflammatory cytokines and the subsequent Th1 response. We show here, using a combination of transcriptomic analysis, genetics and pharmacological inhibitors that the TPL-2-ERK1/2 signaling pathway is important in mediating host resistance to tuberculosis through negative regulation of type I interferon production. The TPL-2-ERK1/2 signalling pathway regulated production by macrophages of several cytokines important in the immune response to Mtb as well as regulating induction of a large number of additional genes, many in a type I IFN dependent manner. In the absence of TPL-2 in vivo, excess type I interferon promoted IL-10 production and exacerbated disease. These findings describe an important regulatory mechanism for controlling tuberculosis and reveal mechanisms by which type I interferon may promote susceptibility to this important disease.
doi:10.4049/jimmunol.1300146
PMCID: PMC3796877  PMID: 23842752
7.  Production of interleukin 27 by human neutrophils regulates their function in response to bacterial infection 
European journal of immunology  2012;42(12):3280-3290.
Septicemia is the most severe form of melioidosis caused by the Gram-negative bacterium, Burkholderia pseudomallei. Here, we showed that levels of IL-27p28 transcript and protein were both significantly elevated in patients with sepsis, particularly melioidosis and in patients with unfavorable disease outcome. Moreover, monocytes/macrophages and neutrophils were the major source of IL-27 during infection. Addition of exogenous IL-27 in vitro resulted in significantly increased bacterial survival, reduced B. pseudomallei-induced oxidative burst and enhanced IL-1beta and TNF-alpha production by purified neutrophils from healthy subjects. Finally, blockade of endogenous IL-27 in neutrophils using soluble IL-27 receptor antagonist prior to infection led to significantly reduced survival of bacteria and decreased IL-1beta, but not TNF-alpha production. These results indicate a potential role of IL-27 in suppression of antibacterial defense mechanisms that might contribute to disease severity in sepsis. The targeting of this cytokine may be beneficial in the management of human sepsis.
doi:10.1002/eji.201242526
PMCID: PMC3711522  PMID: 22965735
IL-27; neutrophil; sepsis; Burkholderia pseudomallei; melioidosis
8.  Whole Blood Gene Expression Profiles to Assess Pathogenesis and Disease Severity in Infants with Respiratory Syncytial Virus Infection 
PLoS Medicine  2013;10(11):e1001549.
In this study, Mejias and colleagues found that specific blood RNA profiles of infants with RSV LRTI allowed for specific diagnosis, better understanding of disease pathogenesis, and better assessment of disease severity.
Please see later in the article for the Editors' Summary
Background
Respiratory syncytial virus (RSV) is the leading cause of viral lower respiratory tract infection (LRTI) and hospitalization in infants. Mostly because of the incomplete understanding of the disease pathogenesis, there is no licensed vaccine, and treatment remains symptomatic. We analyzed whole blood transcriptional profiles to characterize the global host immune response to acute RSV LRTI in infants, to characterize its specificity compared with influenza and human rhinovirus (HRV) LRTI, and to identify biomarkers that can objectively assess RSV disease severity.
Methods and Findings
This was a prospective observational study over six respiratory seasons including a cohort of infants hospitalized with RSV (n = 135), HRV (n = 30), and influenza (n = 16) LRTI, and healthy age- and sex-matched controls (n = 39). A specific RSV transcriptional profile was identified in whole blood (training cohort, n = 45 infants; Dallas, Texas, US) and validated in three different cohorts (test cohort, n = 46, Dallas, Texas, US; validation cohort A, n = 16, Turku, Finland; validation cohort B, n = 28, Columbus, Ohio, US) with high sensitivity (94% [95% CI 87%–98%]) and specificity (98% [95% CI 88%–99%]). It classified infants with RSV LRTI versus HRV or influenza LRTI with 95% accuracy. The immune dysregulation induced by RSV (overexpression of neutrophil, inflammation, and interferon genes, and suppression of T and B cell genes) persisted beyond the acute disease, and immune dysregulation was greatly impaired in younger infants (<6 mo). We identified a genomic score that significantly correlated with outcomes of care including a clinical disease severity score and, more importantly, length of hospitalization and duration of supplemental O2.
Conclusions
Blood RNA profiles of infants with RSV LRTI allow specific diagnosis, better understanding of disease pathogenesis, and assessment of disease severity. This study opens new avenues for biomarker discovery and identification of potential therapeutic or preventive targets, and demonstrates that large microarray datasets can be translated into a biologically meaningful context and applied to the clinical setting.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lower respiratory tract infections (LRTIs)—bacterial and viral infections of the lungs and airways (the tubes that take oxygen-rich air to the lungs)—are major causes of illness and death in children worldwide. Pneumonia (infection of the lungs) alone is responsible for 14% of all child deaths. The leading cause of viral LTRIs in children is respiratory syncytial virus (RSV), which is readily transmitted from person to person by direct contact with nasal fluids or airborne droplets. Almost all children have an RSV infection before their second birthday, but most have only minor symptoms similar to those of a common cold and are cared for at home. Unfortunately, some children develop more serious conditions when they become infected with RSV, such as pneumonia or bronchiolitis (swelling and mucus build-up in the bronchioles, the smallest air passages in the lungs). These children have to be admitted to the hospital for supportive care—there is no specific treatment for RSV infection—such as the provision of supplemental oxygen.
Why Was This Study Done?
The lack of a treatment (and of a vaccine) for RSV is largely due to our incomplete understanding of the cellular events and reactions, including the host immune response, that occur during the development of an RSV infection (disease pathogenesis). Moreover, based on physical examination and available diagnostic tools, it is impossible to predict which children infected with RSV will develop a serious condition that requires hospitalization and which ones can be safely nursed at home. Here, the researchers use microarrays to analyze the global host response to acute RSV LTRI in infants, to define gene expression patterns that are specific to RSV infection rather than infection with other common respiratory viruses, and to identify biomarkers that indicate the severity of RSV infection. “Microarray” analysis allows researchers to examine gene expression patterns (“RNA transcriptional profiles”) in, for example, whole blood; a biomarker is a molecule whose level in bodily fluids or tissues indicates how a disease might develop and helps with patient classification.
What Did the Researchers Do and Find?
The researchers compared the RNA transcriptional profile in whole blood taken from children less than two years old hospitalized with RSV, human rhinovirus, or influenza virus infection (rhinovirus and influenza are two additional viral causes of LRTI), and from healthy infants. Using “statistical group comparisons,” they identified more than 2,000 transcripts that were differentially expressed in blood from 45 infants with RSV infection and from 14 healthy matched controls. Genes related to interferon function (interferons are released by host cells in response to the presence of disease-causing organisms) and neutrophil function (neutrophils are immune system cells that, like interferons, are involved in the innate immune response, the body's first line of defense against infection) were among the most overexpressed genes in infants infected with RSV. Genes regulating T and B cells (components of the adaptive immune response, the body's second-line of defense against infection) were among the most underexpressed genes. This specific transcriptional profile, which was validated in three additional groups of infants, accurately distinguished between infants infected with RSV and those infected with human rhinovirus or influenza virus. Finally, a “molecular distance to health” score (a numerical score that quantifies the transcriptional perturbation associated with an illness) was correlated with the clinical disease severity score of the study participants, with how long they needed supplemental oxygen, and with their duration of hospitalization.
What Do These Findings Mean?
These findings suggest that it might be possible to use whole blood RNA transcriptional profiles to distinguish between infants infected with RSV and those with other viruses that commonly cause LRTI. Moreover, if these findings can be replicated in more patients (including non-hospitalized children), gene expression profiling might provide a strategy for triaging patients with RSV infections when they first present to an emergency department and for monitoring clinical changes during the course of the infection, particularly given the development of molecular tools that might soon enable the “real time” acquisition of transcriptional profiles in the clinical setting. Finally, although certain aspects of the study design limit the accuracy and generalizability of the study's findings, these data provide new insights into the pathogenesis of RSV infection and open new avenues for the discovery of biomarkers for RSV infection and for the identification of therapeutic and preventative targets.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001549.
This study is further discussed in a PLOS Medicine Perspective by Peter Openshaw
The US Centers for Disease Control and Prevention provides information about RSV infection
The US National Heart, Lung, and Blood Institute provides information about the respiratory system and about RSV infections
The UK National Health Service Choices website provides information about bronchiolitis
The British Lung Foundation also provides information on RSV and on bronchiolitis
MedlinePlus provides links to other resources about RSV infections and about pneumonia (in English and Spanish); the MedlinePlus encyclopedia has a page on bronchiolitis (in English and Spanish)
PATH is an international non-profit organization investigating new RSV vaccines
doi:10.1371/journal.pmed.1001549
PMCID: PMC3825655  PMID: 24265599
9.  Transcriptional network predicts viral set point during acute HIV-1 infection 
Background
HIV-1-infected individuals with higher viral set points progress to AIDS more rapidly than those with lower set points. Predicting viral set point early following infection can contribute to our understanding of early control of HIV-1 replication, to predicting long-term clinical outcomes, and to the choice of optimal therapeutic regimens.
Methods
In a longitudinal study of 10 untreated HIV-1-infected patients, we used gene expression profiling of peripheral blood mononuclear cells to identify transcriptional networks for viral set point prediction. At each sampling time, a statistical analysis inferred the optimal transcriptional network that best predicted viral set point. We then assessed the accuracy of this transcriptional model by predicting viral set point in an independent cohort of 10 untreated HIV-1-infected patients from Malawi.
Results
The gene network inferred at time of enrollment predicted viral set point 24 weeks later in the independent Malawian cohort with an accuracy of 87.5%. As expected, the predictive accuracy of the networks inferred at later time points was even greater, exceeding 90% after week 4. The composition of the inferred networks was largely conserved between time points. The 12 genes comprising this dynamic signature of viral set point implicated the involvement of two major canonical pathways: interferon signaling (p<0.0003) and membrane fraction (p<0.02). A silico knockout study showed that HLA-DRB1 and C4BPA may contribute to restricting HIV-1 replication.
Conclusions
Longitudinal gene expression profiling of peripheral blood mononuclear cells from patients with acute HIV-1 infection can be used to create transcriptional network models to early predict viral set point with a high degree of accuracy.
doi:10.1136/amiajnl-2012-000867
PMCID: PMC3534464  PMID: 22700869
Bioinformatics; HIV; systems biology; immunology; microbiology; HIV; microarray
10.  Quiescent Innate Response to Infective Filariae by Human Langerhans Cells Suggests a Strategy of Immune Evasion 
Infection and Immunity  2013;81(5):1420-1429.
Filarial infection is initiated by mosquito-derived third-stage larvae (L3) deposited on the skin that transit through the epidermis, which contains Langerhans cells (LC) and keratinocytes (KC), among other cells. This earliest interaction between L3 and the LC likely conditions the priming of the immune system to the parasite. To determine the nature of this interaction, human LC (langerin+ E-cadherin+ CD1a+) were generated in vitro and exposed to live L3. LC exposed to live L3 for 48 h showed no alterations in the cell surface markers CD14, CD86, CD83, CD207, E-cadherin, CD80, CD40, and HLA-DR or in mRNA expression of inflammation-associated genes, such as those for interleukin 18 (IL-18), IL-18BP, and caspase 1. In contrast to L3, live tachyzoites of Toxoplasma gondii, an intracellular parasite, induced production of CXCL9, IP-10, and IL-6 in LC. Furthermore, preexposure of LC to L3 did not alter Toll-like receptor 3 (TLR3)- or TLR4-mediated expression of the proinflammatory cytokines IL-1β, gamma interferon (IFN-γ), IL-6, or IL-10. Interestingly, cocultures of KC and LC produced significantly more IL-18, IL-1α, and IL-8 than did cultures of LC alone, although exposure of the cocultures to live L3 did not result in altered cytokine production. Microarray examination of ex vivo LC from skin blisters that were exposed to live L3 also showed few significant changes in gene expression compared with unexposed blisters, further underscoring the relatively muted response of LC to L3. Our data suggest that failure by LC to initiate an inflammatory response to the invasive stage of filarial parasites may be a strategy for immune evasion by the filarial parasite.
doi:10.1128/IAI.01301-12
PMCID: PMC3648007  PMID: 23429540
11.  Incidence, clinical presentation, and antimicrobial resistance trends in Salmonella and Shigella infections from children in Yucatan, Mexico 
Background: Salmonella and Shigella cause significant morbidity and mortality among children worldwide. Increased antimicrobial resistance results in greater burden of disease.
Materials and Methods: From 2005 to 2011, Salmonella and Shigella isolates collected from ill children at a major hospital in Yucatan, Mexico, were subjected to serotyping and antimicrobial susceptibility testing by disk diffusion and agar dilution. The identification of blaCTX, blaCMY, blaSHV, blaTEM, and blaOXA and qnr resistance genes was conducted by PCR and sequencing.
Results: Among 2344 children with acute gastroenteritis, salmonellosis decreased from 17.7% in 2005 to 11.2% in 2011 (p < 0.001). In contrast, shigellosis increased from 8.3% in 2010 to 12.1% in 2011. Compared to children with Salmonella, those with Shigella had significantly more bloody stools (59 vs 36%, p < 0.001), dehydration (27 vs 15%, p = 0.031), and seizures (11 vs 3%, p = 0.03). In Salmonella (n = 365), there was a significant decrease in resistance to ampicillin (43 to 16%, p < 0.001), trimethoprim–sulfamethoxazole (44 to 26%, p = 0.014), and extended-spectrum cephalosporins (27 to 10%, p = 0.009). Reduced susceptibility to ciprofloxacin in Salmonella rose from 30 to 41% (p < 0.001). All ceftriaxone-resistant isolates harbored the blaCMY-2 gene. qnr genes were found in 42 (36%) of the 117 Salmonella isolates with a ciprofloxacin MIC ≥ 0.125 μg/ml. Four were qnrA1 and 38 were qnrB19. Resistance to ampicillin (40%) and trimethoprim–sulfamethoxazole (58%) was common in Shigella (n = 218), but isolates remained fully susceptible to ceftriaxone and ciprofloxacin.
Conclusion: Illness from Salmonella has decreased while severe Shigella infections have increased among children with gastroenteritis in the Yucatan Peninsula. While Shigella resistance to clinically important antibiotics remained unchanged, resistance to most of these, except ciprofloxacin, declined in Salmonella. blaCMY-2 and qnr genes are common in Salmonella isolates.
doi:10.3389/fmicb.2013.00288
PMCID: PMC3787544  PMID: 24098297
Salmonella; Shigella; incidence; antimicrobial resistance; beta-lactamase genes; blaCMY-2; qnr genes; Mexico
12.  Interferon Signature in the Blood in Inflammatory Common Variable Immune Deficiency 
PLoS ONE  2013;8(9):e74893.
About half of all subjects with common variable immune deficiency (CVID) are afflicted with inflammatory complications including hematologic autoimmunity, granulomatous infiltrations, interstitial lung disease, lymphoid hyperplasia and/or gastrointestinal inflammatory disease. The pathogenesis of these conditions is poorly understood but singly and in aggregate, these lead to significantly increased (11 fold) morbidity and mortality, not experienced by CVID subjects without these complications. To explore the dysregulated networks in these subjects, we applied whole blood transcriptional profiling to 91 CVID subjects, 47 with inflammatory conditions and 44 without, in comparison to subjects with XLA and healthy controls. As compared to other CVID subjects, males with XLA or healthy controls, the signature of CVID subjects with inflammatory complications was distinguished by a marked up-regulation of IFN responsive genes. Chronic up-regulation of IFN pathways is known to occur in autoimmune disease due to activation of TLRs and other still unclarified cytoplasmic sensors. As subjects with inflammatory complications were also more likely to be lymphopenic, have reduced B cell numbers, and a greater reduction of B, T and plasma cell networks, we suggest that more impaired adaptive immunity in these subjects may lead to chronic activation of innate IFN pathways in response to environmental antigens. The unbiased use of whole blood transcriptome analysis may provides a tool for distinguishing CVID subjects who are at risk for increased morbidity and earlier mortality. As more effective therapeutic options are developed, whole blood transcriptome analyses could also provide an efficient means of monitoring the effects of treatment of the inflammatory phenotype.
doi:10.1371/journal.pone.0074893
PMCID: PMC3775732  PMID: 24069364
14.  Transcriptional Blood Signatures Distinguish Pulmonary Tuberculosis, Pulmonary Sarcoidosis, Pneumonias and Lung Cancers 
PLoS ONE  2013;8(8):e70630.
Rationale
New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations.
Objectives
To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases.
Methods
We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations.
Measurements and Main Results
An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls.
Conclusions
Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.
doi:10.1371/journal.pone.0070630
PMCID: PMC3734176  PMID: 23940611
15.  Gene expression changes in human islets exposed to type 1 diabetic serum 
Islets  2012;4(4):312-319.
A major obstacle to the success of islet cell transplantation as a standard treatment for labile type 1 diabetes mellitus is the immediate loss of up to 70% of the transplanted islet mass. Activation of the complement cascade and coagulation factors has been implicated in initiating the destruction of the islet graft. In this study, we analyzed the gene expression changes in islet cells following exposure to type 1 diabetes mellitus serum (T1DM). Isolated human pancreatic islet cells were cultured for 2 d to stabilize islet cell gene expression. Cultured islets were divided into three groups for treatment as follows: group 1 was treated with autologous donor serum, while groups two and three were treated with sera from ABO-matched allogeneic donors or autoantibody positive type 1 diabetic patient, respectively. Complement was detected using anti-C3 FITC and CH50 assay. Islet gene expression was analyzed using Illumina micro-array technology. Results were confirmed using real-time PCR. Immunofluorescent imaging demonstrated complement deposition only in the T1DM condition. Gene array and class prediction analysis generated a list of 50 genes that were able to predict the effect of T1DM serum on islets. Quantitative PCR corroborated microarray results. Both techniques demonstrated upregulation of MMP9 (243%), IL-1β (255%), IL-11 (220%), IL-12A (132%), RAD (343%) and a concomitant downregulation of IL-1RN (64%) in islets treated with T1DM serum. Islets treated with T1DM serum overexpressed genes associated with angiogenesis while decreasing transcription of genes that protect islets from inflammatory cytokines and reactive oxygen species.
doi:10.4161/isl.21510
PMCID: PMC3496656  PMID: 22885994
islet cell transplantation; microarray; complement; inflammation; autoimmunity
16.  Immunodeficiency, auto-inflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency 
Nature immunology  2012;13(12):1178-1186.
We report the clinical description and molecular dissection of a new fatal human inherited disorder characterized by chronic auto-inflammation, invasive bacterial infections and muscular amylopectinosis. Patients from two kindreds carried biallelic loss-of-expression and loss-of-function mutations in HOIL1, a component the linear ubiquitination chain assembly complex (LUBAC). These mutations resulted in impairment of LUBAC stability. NF-κB activation in response to interleukin-1β (IL-1β) was compromised in the patients’ fibroblasts. By contrast, the patients’ mononuclear leukocytes, particularly monocytes, were hyperresponsive to IL-1β. The consequences of human HOIL-1 and LUBAC deficiencies for IL-1β responses thus differed between cell types, consistent with the unique association of auto-inflammation and immunodeficiency in these patients. These data suggest that LUBAC regulates NF-κB-dependent IL-1β responses differently in different cell types.
doi:10.1038/ni.2457
PMCID: PMC3514453  PMID: 23104095
17.  Induction of TRAIL- and TNF-α-dependent Apoptosis in Human Monocyte-derived Dendritic Cells by Microfilariae of Brugia Malayi1 
Dysregulation of professional APC has been postulated as a major mechanism underlying Ag-specific T cell hyporesponsiveness in patients with patent filarial infection. To address the nature of this dysregulation, dendritic cells (DC) and macrophages (MΦ) generated from elutriated monocytes were exposed to live microfilariae (mf), the parasite stage that circulates in blood and is responsible for most immune dysregulation in filarial infections. DC exposed to mf for 24–96 h showed a marked increase in cell death and caspase-positive cells compared with unexposed DC, while mf exposure did not induce apoptosis in MΦ. Interestingly, 48 h exposure of DC to mf induced mRNA expression of the pro-apoptotic gene TRAIL and both mRNA and protein expression of TNF-α. mAb to TRAIL-R2, TNF-R1, or TNF-α partially reversed mf-induced cell death in DC, as did knocking down the receptor for TRAIL-R2 using small interfering RNA. Mf also induced gene expression of BH3-interacting domain death agonist (Bid) and protein expression of cytochrome c in DC; mf-induced cleavage of Bid could be shown to induce release of cytochrome c, leading to activation of caspase 9. Our data suggest that mf induce DC apoptosis in a TRAIL- and TNF-α-dependent fashion.
PMCID: PMC3662363  PMID: 18981128
Apoptosis; Dendritic cell; Parasitic-helminth
18.  Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood 
The Journal of Experimental Medicine  2012;209(9):1567-1582.
Two unrelated children with HSE carry distinct heterozygous mutations in the gene encoding TANK-binding kinase 1.
Childhood herpes simplex virus-1 (HSV-1) encephalitis (HSE) may result from single-gene inborn errors of TLR3 immunity. TLR3-dependent induction of IFN-α/β or IFN-λ is crucial for protective immunity against primary HSV-1 infection in the central nervous system (CNS). We describe here two unrelated children with HSE carrying different heterozygous mutations (D50A and G159A) in TBK1, the gene encoding TANK-binding kinase 1, a kinase at the crossroads of multiple IFN-inducing signaling pathways. Both mutant TBK1 alleles are loss-of-function but through different mechanisms: protein instability (D50A) or a loss of kinase activity (G159A). Both are also associated with an autosomal-dominant (AD) trait but by different mechanisms: haplotype insufficiency (D50A) or negative dominance (G159A). A defect in polyinosinic-polycytidylic acid–induced TLR3 responses can be detected in fibroblasts heterozygous for G159A but not for D50A TBK1. Nevertheless, viral replication and cell death rates caused by two TLR3-dependent viruses (HSV-1 and vesicular stomatitis virus) were high in fibroblasts from both patients, and particularly so in G159A TBK1 fibroblasts. These phenotypes were rescued equally well by IFN-α2b. Moreover, the IFN responses to the TLR3-independent agonists and viruses tested were maintained in both patients’ peripheral blood mononuclear cells and fibroblasts. The narrow, partial cellular phenotype thus accounts for the clinical phenotype of these patients being limited to HSE. These data identify AD partial TBK1 deficiency as a new genetic etiology of childhood HSE, indicating that TBK1 is essential for the TLR3- and IFN-dependent control of HSV-1 in the CNS.
doi:10.1084/jem.20111316
PMCID: PMC3428952  PMID: 22851595
19.  ZnT8-Specific CD4+ T Cells Display Distinct Cytokine Expression Profiles between Type 1 Diabetes Patients and Healthy Adults 
PLoS ONE  2013;8(2):e55595.
Determination of antigen-specific T cell repertoires in human blood has been a challenge. Here, we show a novel integrated approach that permits determination of multiple parameters of antigen-specific T cell repertoires. The approach consists of two assays: the Direct assay and the Cytokine-driven assay. Briefly, human PBMCs are first stimulated with overlapping peptides encoding a given antigen for 48 hours to measure cytokine secretion (Direct assay). Peptide-reactive T cells are further expanded by IL-2 for 5 days; and after overnight starvation, expanded cells are stimulated with the same peptides from the initial culture to analyze cytokine secretion (Cytokine-driven assay). We first applied this integrated approach to determine the type of islet-antigen-specific T cells in healthy adults. Out of ten donors, the Direct assay identified GAD65-specific CD4+ T cells in three adults and zinc transporter 8 (ZnT8)-specific CD4+ T cells in five adults. The intracytoplasmic cytokine staining assay showed that these islet-antigen-specific CD4+ T cells belonged to the CD45RO+ memory compartment. The Cytokine-driven assay further revealed that islet-antigen-specific CD4+ T cells in healthy adults were capable of secreting various types of cytokines including type 1 and type 2 cytokines as well as IL-10. We next applied our integrated assay to determine whether the type of ZnT8-specific CD4+ T cells is different between Type 1 diabetes patients and age/gender/HLA-matched healthy adults. We found that ZnT8-specific CD4+ T cells were skewed towards Th1 cells in T1D patients, while Th2 and IL-10-producing cells were prevalent in healthy adults. In conclusion, the Direct assay and the Cytokine-driven assay complement each other, and the combination of the two assays provides information of antigen-specific T cell repertoires on the breadth, type, and avidity. This strategy is applicable to determine the differences in the quality of antigen-specific T cells between health and disease.
doi:10.1371/journal.pone.0055595
PMCID: PMC3563599  PMID: 23390544
20.  An Interferon-Inducible Neutrophil-Driven Blood Transcriptional Signature in Human Tuberculosis 
Nature  2010;466(7309):973-977.
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (M. tuberculosis), is a major cause of morbidity and mortality worldwide and efforts to control TB are hampered by difficulties with diagnosis, prevention and treatment 1,2. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease, but current tests cannot identify which individuals will develop disease 3. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines 4,5. We identified a whole blood 393 transcript signature for active TB in intermediate and high burden settings, correlating with radiological extent of disease and reverting to that of healthy controls following treatment. A subset of latent TB patients had signatures similar to those in active TB patients. We also identified a specific 86-transcript signature that discriminated active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-γ and Type I IFNαβ signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis, suggest that this TB signature reflects both changes in cellular composition and altered gene expression. Although an IFN signature was also observed in whole blood of patients with Systemic Lupus Erythematosus (SLE), their complete modular signature differed from TB with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto under-appreciated role of Type I IFNαβ signalling in TB pathogenesis, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic.
doi:10.1038/nature09247
PMCID: PMC3492754  PMID: 20725040
21.  Plasticity and Virus Specificity of the Airway Epithelial Cell Immune Response during Respiratory Virus Infection 
Journal of Virology  2012;86(10):5422-5436.
Airway epithelial cells (AECs) provide the first line of defense in the respiratory tract and are the main target of respiratory viruses. Here, using oligonucleotide and protein arrays, we analyze the infection of primary polarized human AEC cultures with influenza virus and respiratory syncytial virus (RSV), and we show that the immune response of AECs is quantitatively and qualitatively virus specific. Differentially expressed genes (DEGs) specifically induced by influenza virus and not by RSV included those encoding interferon B1 (IFN-B1), type III interferons (interleukin 28A [IL-28A], IL-28B, and IL-29), interleukins (IL-6, IL-1A, IL-1B, IL-23A, IL-17C, and IL-32), and chemokines (CCL2, CCL8, and CXCL5). Lack of type I interferon or STAT1 signaling decreased the expression and secretion of cytokines and chemokines by the airway epithelium. We also observed strong basolateral polarization of the secretion of cytokines and chemokines by human and murine AECs during infection. Importantly, the antiviral response of human AECs to influenza virus or to RSV correlated with the infection signature obtained from peripheral blood mononuclear cells (PBMCs) isolated from patients with acute influenza or RSV bronchiolitis, respectively. IFI27 (also known as ISG12) was identified as a biomarker of respiratory virus infection in both AECs and PBMCs. In addition, the extent of the transcriptional perturbation in PBMCs correlated with the clinical disease severity. Our results demonstrate that the human airway epithelium mounts virus-specific immune responses that are likely to determine the subsequent systemic immune responses and suggest that the absence of epithelial immune mediators after RSV infection may contribute to explaining the inadequacy of systemic immunity to the virus.
doi:10.1128/JVI.06757-11
PMCID: PMC3347264  PMID: 22398282
22.  Detectable Changes in The Blood Transcriptome Are Present after Two Weeks of Antituberculosis Therapy 
PLoS ONE  2012;7(10):e46191.
Rationale
Globally there are approximately 9 million new active tuberculosis cases and 1.4 million deaths annually. Effective antituberculosis treatment monitoring is difficult as there are no existing biomarkers of poor adherence or inadequate treatment earlier than 2 months after treatment initiation. Inadequate treatment leads to worsening disease, disease transmission and drug resistance.
Objectives
To determine if blood transcriptional signatures change in response to antituberculosis treatment and could act as early biomarkers of a successful response.
Methods
Blood transcriptional profiles of untreated active tuberculosis patients in South Africa were analysed before, during (2 weeks and 2 months), at the end of (6 months) and after (12 months) antituberculosis treatment, and compared to individuals with latent tuberculosis. An active-tuberculosis transcriptional signature and a specific treatment-response transcriptional signature were derived. The specific treatment response transcriptional signature was tested in two independent cohorts. Two quantitative scoring algorithms were applied to measure the changes in the transcriptional response. The most significantly represented pathways were determined using Ingenuity Pathway Analysis.
Results
An active tuberculosis 664-transcript signature and a treatment specific 320-transcript signature significantly diminished after 2 weeks of treatment in all cohorts, and continued to diminish until 6 months. The transcriptional response to treatment could be individually measured in each patient.
Conclusions
Significant changes in the transcriptional signatures measured by blood tests were readily detectable just 2 weeks after treatment initiation. These findings suggest that blood transcriptional signatures could be used as early surrogate biomarkers of successful treatment response.
doi:10.1371/journal.pone.0046191
PMCID: PMC3462772  PMID: 23056259
23.  Host Immune Transcriptional Profiles Reflect the Variability in Clinical Disease Manifestations in Patients with Staphylococcus aureus Infections 
PLoS ONE  2012;7(4):e34390.
Staphylococcus aureus infections are associated with diverse clinical manifestations leading to significant morbidity and mortality. To define the role of the host response in the clinical manifestations of the disease, we characterized whole blood transcriptional profiles of children hospitalized with community-acquired S. aureus infection and phenotyped the bacterial strains isolated. The overall transcriptional response to S. aureus infection was characterized by over-expression of innate immunity and hematopoiesis related genes and under-expression of genes related to adaptive immunity. We assessed individual profiles using modular fingerprints combined with the molecular distance to health (MDTH), a numerical score of transcriptional perturbation as compared to healthy controls. We observed significant heterogeneity in the host signatures and MDTH, as they were influenced by the type of clinical presentation, the extent of bacterial dissemination, and time of blood sampling in the course of the infection, but not by the bacterial isolate. System analysis approaches provide a new understanding of disease pathogenesis and the relation/interaction between host response and clinical disease manifestations.
doi:10.1371/journal.pone.0034390
PMCID: PMC3319567  PMID: 22496797
24.  Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity 
The Journal of Experimental Medicine  2011;208(10):2083-2098.
A new autosomal recessive form of complete TLR3 deficiency reveals that human TLR3 is nonredundant in immunity against herpes simplex virus 1 in the central nervous system (CNS) but redundant in host defense against viruses outside the CNS.
Autosomal dominant TLR3 deficiency has been identified as a genetic etiology of childhood herpes simplex virus 1 (HSV-1) encephalitis (HSE). This defect is partial, as it results in impaired, but not abolished induction of IFN-β and -λ in fibroblasts in response to TLR3 stimulation. The apparently normal resistance of these patients to other infections, viral illnesses in particular, may thus result from residual TLR3 responses. We report here an autosomal recessive form of complete TLR3 deficiency in a young man who developed HSE in childhood but remained normally resistant to other infections. This patient is compound heterozygous for two loss-of-function TLR3 alleles, resulting in an absence of response to TLR3 activation by polyinosinic-polycytidylic acid (poly(I:C)) and related agonists in his fibroblasts. Moreover, upon infection of the patient’s fibroblasts with HSV-1, the impairment of IFN-β and -λ production resulted in high levels of viral replication and cell death. In contrast, the patient’s peripheral blood mononuclear cells responded normally to poly(I:C) and to all viruses tested, including HSV-1. Consistently, various TLR3-deficient leukocytes from the patient, including CD14+ and/or CD16+ monocytes, plasmacytoid dendritic cells, and in vitro derived monocyte-derived macrophages, responded normally to both poly(I:C) and HSV-1, with the induction of antiviral IFN production. These findings identify a new genetic etiology for childhood HSE, indicating that TLR3-mediated immunity is essential for protective immunity to HSV-1 in the central nervous system (CNS) during primary infection in childhood, in at least some patients. They also indicate that human TLR3 is largely redundant for responses to double-stranded RNA and HSV-1 in various leukocytes, probably accounting for the redundancy of TLR3 for host defense against viruses, including HSV-1, outside the CNS.
doi:10.1084/jem.20101568
PMCID: PMC3182056  PMID: 21911422
25.  Systems Biology Approaches Reveal a Specific Interferon-Inducible Signature in HTLV-1 Associated Myelopathy 
PLoS Pathogens  2012;8(1):e1002480.
Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that persists lifelong in the host. In ∼4% of infected people, HTLV-1 causes a chronic disabling neuroinflammatory disease known as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The pathogenesis of HAM/TSP is unknown and treatment remains ineffective. We used gene expression microarrays followed by flow cytometric and functional assays to investigate global changes in blood transcriptional profiles of HTLV-1-infected and seronegative individuals. We found that perturbations of the p53 signaling pathway were a hallmark of HTLV-1 infection. In contrast, a subset of interferon (IFN)-stimulated genes was over-expressed in patients with HAM/TSP but not in asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The IFN-inducible signature was present in all circulating leukocytes and its intensity correlated with the clinical severity of HAM/TSP. Leukocytes from patients with HAM/TSP were primed to respond strongly to stimulation with exogenous IFN. However, while type I IFN suppressed expression of the HTLV-1 structural protein Gag it failed to suppress the highly immunogenic viral transcriptional transactivator Tax. We conclude that over-expression of a subset of IFN-stimulated genes in chronic HTLV-1 infection does not constitute an efficient host response but instead contributes to the development of HAM/TSP.
Author Summary
Infection with the Human T Lymphotropic virus is widespread in the tropics and subtropics, where it causes a chronic disabling disease of the nervous system abbreviated as HAM/TSP. There is no effective treatment available for HAM/TSP, because it is not understood how the virus causes the neuronal damage that results in the clinical symptoms of weakness and paralysis of the legs. Here, we compared the frequencies of cell populations and gene expression profiles from diseased and asymptomatic HTLV-1 carriers to identify abnormalities in biological pathways that cause HAM/TSP. We discovered a distinct group of genes that is over-expressed in white blood cells in patients with HAM/TSP, but not asymptomatic HTLV-1 carriers or patients with the clinically similar disease multiple sclerosis. The expression of these genes is induced by interferons, a group of anti-viral proteins that are usually beneficial to the host but can also cause inflammation. We also found that interferons did not efficiently suppress HTLV-1 protein expression in vitro. We conclude that interferons do not control chronic HTLV-1 infection but instead contribute to the development of HAM/TSP. Our study provides new insights into the development of HTLV-1-associated diseases and opens new areas of therapeutic intervention.
doi:10.1371/journal.ppat.1002480
PMCID: PMC3266939  PMID: 22291590

Results 1-25 (52)