PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Updates to BioSamples database at European Bioinformatics Institute 
Nucleic Acids Research  2013;42(D1):D50-D52.
The BioSamples database at the EBI (http://www.ebi.ac.uk/biosamples) provides an integration point for BioSamples information between technology specific databases at the EBI, projects such as ENCODE and reference collections such as cell lines. The database delivers a unified query interface and API to query sample information across EBI’s databases and provides links back to assay databases. Sample groups are used to manage related samples, e.g. those from an experimental submission, or a single reference collection. Infrastructural improvements include a new user interface with ontological and key word queries, a new query API, a new data submission API, complete RDF data download and a supporting SPARQL endpoint, accessioning at the point of submission to the European Nucleotide Archive and European Genotype Phenotype Archives and improved query response times.
doi:10.1093/nar/gkt1081
PMCID: PMC3965081  PMID: 24265224
2.  ArrayExpress update—trends in database growth and links to data analysis tools 
Nucleic Acids Research  2012;41(D1):D987-D990.
The ArrayExpress Archive of Functional Genomics Data (http://www.ebi.ac.uk/arrayexpress) is one of three international functional genomics public data repositories, alongside the Gene Expression Omnibus at NCBI and the DDBJ Omics Archive, supporting peer-reviewed publications. It accepts data generated by sequencing or array-based technologies and currently contains data from almost a million assays, from over 30 000 experiments. The proportion of sequencing-based submissions has grown significantly over the last 2 years and has reached, in 2012, 15% of all new data. All data are available from ArrayExpress in MAGE-TAB format, which allows robust linking to data analysis and visualization tools, including Bioconductor and GenomeSpace. Additionally, R objects, for microarray data, and binary alignment format files, for sequencing data, have been generated for a significant proportion of ArrayExpress data.
doi:10.1093/nar/gks1174
PMCID: PMC3531147  PMID: 23193272
3.  graph2tab, a library to convert experimental workflow graphs into tabular formats 
Bioinformatics  2012;28(12):1665-1667.
Motivations: Spreadsheet-like tabular formats are ever more popular in the biomedical field as a mean for experimental reporting. The problem of converting the graph of an experimental workflow into a table-based representation occurs in many such formats and is not easy to solve.
Results: We describe graph2tab, a library that implements methods to realise such a conversion in a size-optimised way. Our solution is generic and can be adapted to specific cases of data exporters or data converters that need to be implemented.
Availability and Implementation: The library source code and documentation are available at http://github.com/ISA-tools/graph2tab.
Contact: brandizi@ebi.ac.uk.
Supplementary Information: A supplementary document describes the theoretical and technical details about the library implementation.
doi:10.1093/bioinformatics/bts258
PMCID: PMC3371871  PMID: 22556367
4.  The BioSample Database (BioSD) at the European Bioinformatics Institute 
Nucleic Acids Research  2011;40(D1):D64-D70.
The BioSample Database (http://www.ebi.ac.uk/biosamples) is a new database at EBI that stores information about biological samples used in molecular experiments, such as sequencing, gene expression or proteomics. The goals of the BioSample Database include: (i) recording and linking of sample information consistently within EBI databases such as ENA, ArrayExpress and PRIDE; (ii) minimizing data entry efforts for EBI database submitters by enabling submitting sample descriptions once and referencing them later in data submissions to assay databases and (iii) supporting cross database queries by sample characteristics. Each sample in the database is assigned an accession number. The database includes a growing set of reference samples, such as cell lines, which are repeatedly used in experiments and can be easily referenced from any database by their accession numbers. Accession numbers for the reference samples will be exchanged with a similar database at NCBI. The samples in the database can be queried by their attributes, such as sample types, disease names or sample providers. A simple tab-delimited format facilitates submissions of sample information to the database, initially via email to biosamples@ebi.ac.uk
doi:10.1093/nar/gkr937
PMCID: PMC3245134  PMID: 22096232
5.  Knowledge sharing and collaboration in translational research, and the DC-THERA Directory 
Briefings in Bioinformatics  2011;12(6):562-575.
Biomedical research relies increasingly on large collections of data sets and knowledge whose generation, representation and analysis often require large collaborative and interdisciplinary efforts. This dimension of ‘big data’ research calls for the development of computational tools to manage such a vast amount of data, as well as tools that can improve communication and access to information from collaborating researchers and from the wider community. Whenever research projects have a defined temporal scope, an additional issue of data management arises, namely how the knowledge generated within the project can be made available beyond its boundaries and life-time. DC-THERA is a European ‘Network of Excellence’ (NoE) that spawned a very large collaborative and interdisciplinary research community, focusing on the development of novel immunotherapies derived from fundamental research in dendritic cell immunobiology. In this article we introduce the DC-THERA Directory, which is an information system designed to support knowledge management for this research community and beyond. We present how the use of metadata and Semantic Web technologies can effectively help to organize the knowledge generated by modern collaborative research, how these technologies can enable effective data management solutions during and beyond the project lifecycle, and how resources such as the DC-THERA Directory fit into the larger context of e-science.
doi:10.1093/bib/bbr051
PMCID: PMC3220873  PMID: 21969471
semantic web; ontology; immunology; eScience; data integration
6.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
Background
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Results
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
Conclusions
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
doi:10.1186/1745-7580-6-10
PMCID: PMC3000836  PMID: 21092113
7.  ArrayExpress update—an archive of microarray and high-throughput sequencing-based functional genomics experiments 
Nucleic Acids Research  2010;39(Database issue):D1002-D1004.
The ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress) is one of the three international public repositories of functional genomics data supporting publications. It includes data generated by sequencing or array-based technologies. Data are submitted by users and imported directly from the NCBI Gene Expression Omnibus. The ArrayExpress Archive is closely integrated with the Gene Expression Atlas and the sequence databases at the European Bioinformatics Institute. Advanced queries provided via ontology enabled interfaces include queries based on technology and sample attributes such as disease, cell types and anatomy.
doi:10.1093/nar/gkq1040
PMCID: PMC3013660  PMID: 21071405
8.  ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level 
Bioinformatics  2010;26(18):2354-2356.
Summary: The first open source software suite for experimentalists and curators that (i) assists in the annotation and local management of experimental metadata from high-throughput studies employing one or a combination of omics and other technologies; (ii) empowers users to uptake community-defined checklists and ontologies; and (iii) facilitates submission to international public repositories.
Availability and Implementation: Software, documentation, case studies and implementations at http://www.isa-tools.org
Contact: isatools@googlegroups.com
doi:10.1093/bioinformatics/btq415
PMCID: PMC2935443  PMID: 20679334
9.  Towards Interoperable Reporting Standards for Omics Data: Hopes and Hurdles 
Background
As the size and complexity of scientific datasets and the corresponding information stores grow, standards for collecting, describing, formatting, submitting and exchanging information are playing an increasingly active role. Several initiatives occupy strategic positions in the international scenario, both within and across domains. However, the job of harmonising reporting standards is still very much a work in progress; both software interoperability and the data integration remain challenging as things stand.
Results
The status quo with respect to standardization initiatives is summarized here, with particular emphasis on the motivation for, and the challenges of, ongoing synergistic activities amongst the academic community focused on the creation of truly interoperable standards.
Conclusions
Groups generating standards should engage with ongoing cross-domain activities to simplify the integration of heterogeneous data sets to the greatest possible extent.
PMCID: PMC3041584  PMID: 21347181
10.  ArrayExpress update—from an archive of functional genomics experiments to the atlas of gene expression 
Nucleic Acids Research  2008;37(Database issue):D868-D872.
ArrayExpress http://www.ebi.ac.uk/arrayexpress consists of three components: the ArrayExpress Repository—a public archive of functional genomics experiments and supporting data, the ArrayExpress Warehouse—a database of gene expression profiles and other bio-measurements and the ArrayExpress Atlas—a new summary database and meta-analytical tool of ranked gene expression across multiple experiments and different biological conditions. The Repository contains data from over 6000 experiments comprising approximately 200 000 assays, and the database doubles in size every 15 months. The majority of the data are array based, but other data types are included, most recently—ultra high-throughput sequencing transcriptomics and epigenetic data. The Warehouse and Atlas allow users to query for differentially expressed genes by gene names and properties, experimental conditions and sample properties, or a combination of both. In this update, we describe the ArrayExpress developments over the last two years.
doi:10.1093/nar/gkn889
PMCID: PMC2686529  PMID: 19015125
11.  The Genopolis Microarray Database 
BMC Bioinformatics  2007;8(Suppl 1):S21.
Background
Gene expression databases are key resources for microarray data management and analysis and the importance of a proper annotation of their content is well understood.
Public repositories as well as microarray database systems that can be implemented by single laboratories exist. However, there is not yet a tool that can easily support a collaborative environment where different users with different rights of access to data can interact to define a common highly coherent content. The scope of the Genopolis database is to provide a resource that allows different groups performing microarray experiments related to a common subject to create a common coherent knowledge base and to analyse it. The Genopolis database has been implemented as a dedicated system for the scientific community studying dendritic and macrophage cells functions and host-parasite interactions.
Results
The Genopolis Database system allows the community to build an object based MIAME compliant annotation of their experiments and to store images, raw and processed data from the Affymetrix GeneChip® platform. It supports dynamical definition of controlled vocabularies and provides automated and supervised steps to control the coherence of data and annotations. It allows a precise control of the visibility of the database content to different sub groups in the community and facilitates exports of its content to public repositories. It provides an interactive users interface for data analysis: this allows users to visualize data matrices based on functional lists and sample characterization, and to navigate to other data matrices defined by similarity of expression values as well as functional characterizations of genes involved. A collaborative environment is also provided for the definition and sharing of functional annotation by users.
Conclusion
The Genopolis Database supports a community in building a common coherent knowledge base and analyse it. This fills a gap between a local database and a public repository, where the development of a common coherent annotation is important. In its current implementation, it provides a uniform coherently annotated dataset on dendritic cells and macrophage differentiation.
doi:10.1186/1471-2105-8-S1-S21
PMCID: PMC1885851  PMID: 17430566

Results 1-11 (11)