Search tips
Search criteria

Results 1-5 (5)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
Document Types
1.  PMEL Amyloid Fibril Formation: The Bright Steps of Pigmentation 
In pigment cells, melanin synthesis takes place in specialized organelles, called melanosomes. The biogenesis and maturation of melanosomes is initiated by an unpigmented step that takes place prior to the initiation of melanin synthesis and leads to the formation of luminal fibrils deriving from the pigment cell-specific pre-melanosomal protein (PMEL). In the lumen of melanosomes, PMEL fibrils optimize sequestration and condensation of the pigment melanin. Interestingly, PMEL fibrils have been described to adopt a typical amyloid-like structure. In contrast to pathological amyloids often associated with neurodegenerative diseases, PMEL fibrils represent an emergent category of physiological amyloids due to their beneficial cellular functions. The formation of PMEL fibrils within melanosomes is tightly regulated by diverse mechanisms, such as PMEL traffic, cleavage and sorting. These mechanisms revealed increasing analogies between the formation of physiological PMEL fibrils and pathological amyloid fibrils. In this review we summarize the known mechanisms of PMEL fibrillation and discuss how the recent understanding of physiological PMEL amyloid formation may help to shed light on processes involved in pathological amyloid formation.
PMCID: PMC5037717  PMID: 27589732
melanosome; PMEL; amyloid; pigmentation; fibril formation; melanocyte; secretases; apolipoprotein E
2.  Lipid Sorting and Multivesicular Endosome Biogenesis 
Intracellular organelles, including endosomes, show differences not only in protein but also in lipid composition. It is becoming clear from the work of many laboratories that the mechanisms necessary to achieve such lipid segregation can operate at very different levels, including the membrane biophysical properties, the interactions with other lipids and proteins, and the turnover rates or distribution of metabolic enzymes. In turn, lipids can directly influence the organelle membrane properties by changing biophysical parameters and by recruiting partner effector proteins involved in protein sorting and membrane dynamics. In this review, we will discuss how lipids are sorted in endosomal membranes and how they impact on endosome functions.
Membranes along the endocytic pathway exhibit differences in lipid composition. This influences the distribution of membrane-associated proteins and the functions of the endosomal system.
PMCID: PMC3783046  PMID: 24086044
3.  Discovery of novel membrane binding structures and functions 
The function of a protein is determined by its intrinsic activity in the context of its subcellular distribution. Membranes localize proteins within cellular compartments and govern their specific activities. Discovering such membrane-protein interactions is important for understanding biological mechanisms, and could uncover novel sites for therapeutic intervention. Here we present a method for detecting membrane interactive proteins and their exposed residues that insert into lipid bilayers. Although the development process involved analysis of how C1b, C2, ENTH, FYVE, Gla, pleckstrin homology (PH) and PX domains bind membranes, the resulting Membrane Optimal Docking Area (MODA) method yields predictions for a given protein of known three dimensional structures without referring to canonical membrane-targeting modules. This approach was tested on the Arf1 GTPase, ATF2 acetyltransferase, von Willebrand factor A3 domain and Neisseria gonorrhoeae MsrB protein, and further refined with membrane interactive and non-interactive FAPP1 and PKD1 pleckstrin homology domains, respectively. Furthermore we demonstrate how this tool can be used to discover unprecedented membrane binding functions as illustrated by the Bro1 domain of Alix, which was revealed to recognize lysobisphosphatidic acid (LBPA). Validation of novel membrane-protein interactions relies on other techniques such as nuclear magnetic resonance spectroscopy (NMR) which was used here to map the sites of micelle interaction. Together this indicates that genome-wide identification of known and novel membrane interactive proteins and sites is now feasible, and provides a new tool for functional annotation of the proteome.
PMCID: PMC4267288  PMID: 25394204
peripheral membrane protein; membrane interaction interface; phospholipid interaction; bilayer insertion; lipid site identification; protein structure annotation
4.  Viral infection controlled by a calcium-dependent lipid-binding module in ALIX 
Developmental cell  2013;25(4):364-373.
ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium– and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA- and calcium–binding are necessary for endosome association and virus infection, as are ALIX ESCRT-binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection.
PMCID: PMC4129370  PMID: 23664863
5.  In Vitro Budding of Intralumenal Vesicles into Late Endosomes Is Regulated by Alix and Tsg101 
Molecular Biology of the Cell  2008;19(11):4942-4955.
Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively.
PMCID: PMC2575168  PMID: 18768755

Results 1-5 (5)