Search tips
Search criteria

Results 1-22 (22)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
Document Types
1.  Role of Toll-Like Receptor 13 in Innate Immune Recognition of Group B Streptococci 
Infection and Immunity  2014;82(12):5013-5022.
Murine Toll-like receptor 13 (TLR13), an endosomal receptor that is not present in humans, is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA (23S rRNA). Little is known, however, of the impact of TLR13 on antibacterial host defenses. Here we examined the role of this receptor in the context of infection induced by the model pathogen group B streptococcus (GBS). To this end, we used bacterial strains masked from TLR13 recognition by virtue of constitutive expression of the ErmC methyltransferase, which results in dimethylation of the 23S rRNA motif at a critical adenine residue. We found that TLR13-mediated rRNA recognition was required for optimal induction of tumor necrosis factor alpha and nitrous oxide in dendritic cell and macrophage cultures stimulated with heat-killed bacteria or purified bacterial RNA. However, TLR13-dependent recognition was redundant when live bacteria were used as a stimulus. Moreover, masking bacterial rRNA from TLR13 recognition did not increase the ability of GBS to avoid host defenses and replicate in vivo. In contrast, increased susceptibility to infection was observed under conditions in which signaling by all endosomal TLRs was abolished, i.e., in mice with a loss-of-function mutation in the chaperone protein UNC93B1. Our data lend support to the conclusion that TLR13 participates in GBS recognition, although blockade of the function of this receptor can be compensated for by other endosomal TLRs. Lack of selective pressure by bacterial infections might explain the evolutionary loss of TLR13 in humans. However, further studies using different bacterial species are needed to prove this hypothesis.
PMCID: PMC4249301  PMID: 25225249
2.  Innate Immune Response to Streptococcus pyogenes Depends on the Combined Activation of TLR13 and TLR2 
PLoS ONE  2015;10(3):e0119727.
Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13−/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms.
PMCID: PMC4355416  PMID: 25756897
3.  Toll-Like Receptor 3 Is a Potent Negative Regulator of Axonal Growth in Mammals 
Toll is a cell surface receptor with well described roles in the developmental patterning of invertebrates and innate immunity in adult Drosophila. Mammalian toll-like receptors represent a family of Toll orthologs that function in innate immunity by recognizing molecular motifs unique to pathogens or injured tissue. One member in this family of pattern recognition receptors, toll-like receptor 3 (TLR3), recognizes viral double-stranded RNA and host mRNA. We examined the expression and function of TLRs in the nervous system and found that TLR3 is expressed in the mouse central and peripheral nervous systems and is concentrated in the growth cones of neurons. Activation of TLR3 by the synthetic ligand polyinosine:polycytidylic acid (poly I:C) or by mRNA rapidly causes growth cone collapse and irreversibly inhibits neurite extension independent of nuclear factor κB. Mice lacking functional TLR3 were resistant to the neurodegenerative effects of poly I:C. Neonatal mice injected with poly I:C were found to have fewer axons exiting dorsal root ganglia and displayed related sensorimotor deficits. No effect of poly I:C was observed in mice lacking functional TLR3. Together, these findings provide evidence that an innate immune pattern recognition receptor functions autonomously in neurons to regulate axonal growth and advances a novel hypothesis that this class of receptors may contribute to injury and limited CNS regeneration.
PMCID: PMC4313565  PMID: 18032677
Toll-like receptor-3; axon; polyinosine:polycytidylic acid; poly I:C; RNA; CNS; danger theory
4.  Inflammatory Regulation by TLR3 in Acute Hepatitis1 
TLR3 is known to respond to dsRNA from viruses, apoptotic cells, and/or necrotic cells. Dying cells are a rich source of ligands that can activate TLRs, such as TLR3. TLR3 expressed in the liver is likely to be a mediator of innate activation and inflammation in the liver. The importance of this function of TLR3 during acute hepatitis has not previously been fully explored. We used the mouse model of Con A-induced hepatitis and observed a novel role for TLR3 in hepatocyte damage in the absence of an exogenous viral stimulus. Interestingly, TLR3 expression in liver mononuclear cells and sinus endothelial cells was up-regulated after Con A injection and TLR3−/− mice were protected from Con A-induced hepatitis. Moreover, splenocytes from TLR3−/− mice proliferated less to Con A stimulation in the presence of RNA derived from damaged liver tissue compared with wild-type (WT) mice. To determine the relative contribution of TLR3 expression by hematopoietic cells or nonhematopoietic to liver damage during Con A-induced hepatitis, we generated bone marrow chimeric mice. TLR3−/− mice engrafted with WT hematopoietic cells were protected in a similar manner to WT mice reconstituted with TLR3−/− bone marrow, indicating that TLR3 signaling in both nonhematopoietic and hematopoietic cells plays an important role in mediating liver damage. In summary, our data suggest that TLR3 signaling is necessary for Con A-induced liver damage in vivo and that TLR3 regulates inflammation and the adaptive T cell immune response in the absence of viral infection.
PMCID: PMC3787866  PMID: 19710451
5.  Resurrection of endogenous retroviruses in antibody-deficient mice 
Nature  2012;491(7426):774-778.
The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracks1, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome2,3. The long-term consequences for the host of interaction with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential impact of one microbial symbiont on another is even less clear. We have studied the control of ERVs in the commonly-used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic4 MLV (eMLV) in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immune-deficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.
PMCID: PMC3511586  PMID: 23103862
6.  TLR3 and Rig-Like Receptor on Myeloid Dendritic Cells and Rig-Like Receptor on Human NK Cells Are Both Mandatory for Production of IFN-γ in Response to Double-Stranded RNA 
Cross-talk between NK cells and dendritic cells (DCs) is critical for the potent therapeutic response to dsRNA, but the receptors involved remained controversial. We show in this paper that two dsRNAs, polyadenylic-polyuridylic acid and polyinosinic-polycytidylic acid [poly(I:C)], similarly engaged human TLR3, whereas only poly(I:C) triggered human RIG-I and MDA5. Both dsRNA enhanced NK cell activation within PBMCs but only poly(I:C) induced IFN-γ. Although myeloid DCs (mDCs) were required for NK cell activation, induction of cytolytic potential and IFN-γ production did not require contact with mDCs but was dependent on type I IFN and IL-12, respectively. Poly(I:C) but not polyadenylic-polyuridylic acid synergized with mDC-derived IL-12 for IFN-γ production by acting directly on NK cells. Finally, the requirement of both TLR3 and Rig-like receptor (RLR) on mDCs and RLRs but not TLR3 on NK cells for IFN-γ production was demonstrated using TLR3- and Cardif-deficient mice and human RIG-I–specific activator. Thus, we report the requirement of cotriggering TLR3 and RLR on mDCs and RLRs on NK cells for a pathogen product to induce potent innate cell activation.
PMCID: PMC3545654  PMID: 20639488
7.  BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions 
Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.
PMCID: PMC3703528  PMID: 23847770
Brucella; TIR domain; Btp1/BtpA; TLR; DC; NF-κB
8.  Sex Bias in Susceptibility to MCMV Infection: Implication of TLR9 
PLoS ONE  2012;7(9):e45171.
Toll-like receptor (TLR)-dependent pathways control the activation of various immune cells and the production of cytokines and chemokines that are important in innate immune control of viruses, including mouse cytomegalovirus (MCMV). Here we report that upon MCMV infection wild-type and TLR7−/− male mice were more resistant than their female counterparts, while TLR9−/− male and female mice showed similar susceptibility. Interestingly, 36 h upon MCMV infection TLR9 mRNA expression was higher in male than in female mouse spleens. MCMV infection led to stronger reduction of marginal zone (MZ) B cells, and higher infiltration of plasmacytoid dendritic cells and neutrophils in wild-type male than female mice, while no such sex differences were observed in TLR9−/− mice. In accordance, the serum levels of KC and MIP-2, major neutrophil chemoattractants, were higher in wild-type, but not in TLR9−/−, male versus female mice. Wild-type MCMV-infected female mice showed more severe liver inflammation, necrosis and steatosis compared to infected male mice. Our data demonstrate sex differences in susceptibility to MCMV infection, accompanied by a lower activation of the innate immune system in female mice, and can be attributed, at least in a certain degree, to the lower expression of TLR9 in female than male mice.
PMCID: PMC3447886  PMID: 23028824
9.  The Pore-Forming Toxin β hemolysin/cytolysin Triggers p38 MAPK-Dependent IL-10 Production in Macrophages and Inhibits Innate Immunity 
PLoS Pathogens  2012;8(7):e1002812.
Group B Streptococcus (GBS) is a leading cause of invasive bacterial infections in human newborns and immune-compromised adults. The pore-forming toxin (PFT) β hemolysin/cytolysin (βh/c) is a major virulence factor for GBS, which is generally attributed to its cytolytic functions. Here we show βh/c has immunomodulatory properties on macrophages at sub-lytic concentrations. βh/c-mediated activation of p38 MAPK drives expression of the anti-inflammatory and immunosuppressive cytokine IL-10, and inhibits both IL-12 and NOS2 expression in GBS-infected macrophages, which are critical factors in host defense. Isogenic mutant bacteria lacking βh/c fail to activate p38-mediated IL-10 production in macrophages and promote increased IL-12 and NOS2 expression. Furthermore, targeted deletion of p38 in macrophages increases resistance to invasive GBS infection in mice, associated with impaired IL-10 induction and increased IL-12 production in vivo. These data suggest p38 MAPK activation by βh/c contributes to evasion of host defense through induction of IL-10 expression and inhibition of macrophage activation, a new mechanism of action for a PFT and a novel anti-inflammatory role for p38 in the pathogenesis of invasive bacterial infection. Our studies suggest p38 MAPK may represent a new therapeutic target to blunt virulence and improve clinical outcome of invasive GBS infection.
Author Summary
Our studies show β hemolysin/cytolysin (βh/c) from Group B Streptococcus (GBS), inhibits the activation of macrophages and the innate immune response to GBS. We show that βh/c triggers activation of mitogen activated protein kinase (MAPK) in GBS-infected macrophages leading to expression of the anti-inflammatory cytokine interleukin (IL)-10 and the suppression of genes required for effective anti-bacterial immunity. Furthermore, mice deficient in MAPK activation, specifically in macrophages, show increased resistance to invasive GBS infection. Our data describe a new role for a PFT in the evasion of host immunity that may have significant impact on the pathogenesis of invasive bacterial infections, and suggest targeting the signaling pathways triggered by PFTs in immune cells could increase innate immunity and host resistance.
PMCID: PMC3400567  PMID: 22829768
10.  TLR8 deficiency leads to autoimmunity in mice 
The Journal of Clinical Investigation  2010;120(10):3651-3662.
TLRs play an essential role in the induction of immune responses by detecting conserved molecular products of microorganisms. However, the function of TLR8 is largely unknown. In the current study, we investigated the role of TLR8 signaling in immunity in mice. We found that Tlr8–/– DCs overexpressed TLR7, were hyperresponsive to various TLR7 ligands, and showed stronger and faster NF-κB activation upon stimulation with the TLR7 ligand R848. Tlr8–/– mice showed splenomegaly, defective development of marginal zone (MZ) and B1 B cells, and increased serum levels of IgM and IgG2a. Furthermore, Tlr8–/– mice exhibited increased serum levels of autoantibodies against small nuclear ribonucleoproteins, ribonucleoprotein, and dsDNA and developed glomerulonephritis, whereas neither Tlr7–/– nor Tlr8–/–Tlr7–/– mice showed any of the phenotypes observed in Tlr8–/– mice. These data provide evidence for a pivotal role for mouse TLR8 in the regulation of mouse TLR7 expression and prevention of spontaneous autoimmunity.
PMCID: PMC2947223  PMID: 20811154
11.  PolyI:C-induced reduction in uptake of soluble antigen is independent of dendritic cell activation 
International Immunology  2009;21(7):871-879.
Dendritic cells (DC) are key players in the initiation and modulation of adaptive immune responses due to their ability to acquire and present antigen and stimulate T cells. For the induction of effector T cell functions, antigen must be presented by activated DC. In this study, we have compared uptake of antigen by mouse DC in the presence of different Toll-like receptor (TLR) agonists, which are potent inducers of DC activation. Here we show that the reduction in uptake of soluble antigen in the presence of the viral double-stranded RNA (dsRNA) analogues polyinosinic–polycytidylic acid and Ampligen is independent of TLR-mediated DC activation. A reduction in antigen uptake by bone marrow-derived and splenic DC was also observed in response to other RNA homopolymers such as polyinosinic and polyguanylic acids, which are known inhibitors of scavenger receptor-mediated endocytosis. Pinocytosis and mannose receptor-mediated uptake of soluble antigen were not affected by any of the tested nucleic acids. The reduction in antigen uptake by dsRNA did not negatively influence the T cell stimulating properties of the DC. In summary, we conclude that the decrease in antigen endocytosis observed in the presence of a variety of TLR agonists is independent of TLR signalling and is caused by competition for specific surface receptors that are involved in the uptake of these TLR agonists and the antigen.
PMCID: PMC2699490  PMID: 19505890
antigen uptake; dendritic cells; endocytosis; Toll-like receptors
12.  Type I Interferon Induction Is Detrimental during Infection with the Whipple's Disease Bacterium, Tropheryma whipplei 
PLoS Pathogens  2010;6(1):e1000722.
Macrophages are the first line of defense against pathogens. Upon infection macrophages usually produce high levels of proinflammatory mediators. However, macrophages can undergo an alternate polarization leading to a permissive state. In assessing global macrophage responses to the bacterial agent of Whipple's disease, Tropheryma whipplei, we found that T. whipplei induced M2 macrophage polarization which was compatible with bacterial replication. Surprisingly, this M2 polarization of infected macrophages was associated with apoptosis induction and a functional type I interferon (IFN) response, through IRF3 activation and STAT1 phosphorylation. Using macrophages from mice deficient for the type I IFN receptor, we found that this type I IFN response was required for T. whipplei-induced macrophage apoptosis in a JNK-dependent manner and was associated with the intracellular replication of T. whipplei independently of JNK. This study underscores the role of macrophage polarization in host responses and highlights the detrimental role of type I IFN during T. whipplei infection.
Author Summary
Innate immune cells are sentinels allowing the host to sense invading pathogens. Among them, macrophages are highly microbicidal and are able to kill microorganisms. However, several pathogens have evolved strategies to hijack macrophage responses in order to survive or replicate. Tropheryma whipplei is the agent of Whipple's disease, a systemic disease that associates arthropathy, weight loss and gastrointestinal symptoms. It has been known for several years that this bacterium has a tropism for macrophages, in which it replicates. In this study, we have shown that T. whipplei induces host cell apoptosis and a surprising macrophage activation, characterized by anti-inflammatory molecules and type I interferon (IFN) signaling, which is generally associated to viral infections. We demonstrate that this type I IFN response is critical for bacterial pathogenicity, as it is required for bacterial replication and provides the first step of the apoptotic program of infected macrophages. By identifying these signaling events induced in macrophage by T. whipplei, we can now better understand the molecular basis of the pathophysiology of Whipple's disease, of interest for clinical and therapeutic ends.
PMCID: PMC2798751  PMID: 20090833
13.  Protective role of membrane tumour necrosis factor in the host’s resistance to mycobacterial infection 
Immunology  2008;125(4):522-534.
Tumour necrosis factor-α (TNF-α) plays a critical role in the recruitment and activation of mononuclear cells in mycobacterial infection. The role of membrane TNF, in host resistance against Mycobacterium bovis bacille Calmette–Guérin (BCG), was tested in knock-in mice in which the endogenous TNF was replaced by a non-cleavable and regulated allele (Δ1–12, TNFtm/tm). While 100% of mice with complete TNF deficiency (TNF−/−) succumbed to infection, 50% of TNFtm/tm mice were able to control M. bovis BCG infection and survived the experimental period. Membrane expressed TNF allowed a substantial recruitment of activated T cells and macrophages with granuloma formation and expression of bactericidal inducible nitric oxide synthase (iNOS). Using virulent Mycobacterium tuberculosis infection we confirm that membrane TNF conferred partial protection. Infection in TNFtm/tm double transgenic mice with TNF-R1 or TNF-R2 suggest protection is mediated through TNF-R2 signalling. Therefore, the data suggest that membrane-expressed TNF plays a critical role in host defence to mycobacterial infection and may partially substitute for soluble TNF.
PMCID: PMC2612548  PMID: 18544042
BCG; granuloma; H37Rv; membrane Δ1-12 TNF; Mycobacterium; T-cell recruitment; TNF-deficiency
14.  Multiple MyD88-dependent responses contribute to pulmonary clearance of Legionella pneumophila 
Cellular microbiology  2008;11(1):21-36.
MyD88-dependent signaling is important for secretion of early inflammatory cytokines and host protection in response to Legionella pneumophila infection. Although TLR2 contributes to MyD88-dependent clearance of L. pneumophila, TLR-independent functions of MyD88 could also be important. To determine why MyD88 is critical for host protection to L. pneumophila the contribution of multiple TLRs and IL-18 receptor (IL-18R)-dependent IFN-γ production in a mouse. Mice deficient for TLR5 or TLR9, or deficient for TLR2 along with either TLR5 or TLR9, were competent for controlling bacterial replication and had no apparent defects in cytokine production compared to control mice. MyD88-dependent production of IFN-γ in the lung was mediated primarily by NK cells and required IL-18R signaling. Reducing IFN-γ levels did not greatly affect the kinetics of L. pneumophila replication or clearance in infected mice. Additionally, IFN-γ-deficient mice did not have a susceptibility phenotype as severe as the MyD88-deficient mice and were able to control a pulmonary infection by L. pneumophila. Thus, MyD88-dependent innate immune responses induced by L. pneumophila involve both TLR-dependent responses and IL-18R-dependent production of IFN-γ by NK cells, and these MyD88-dependent pathways can function independently to provide host protection against an intracellular pathogen.
PMCID: PMC2752851  PMID: 18782351
15.  Role of TLR3 in the immunogenicity of replicon plasmid-based vaccines 
Gene therapy  2008;16(3):359-366.
Replicon plasmids encoding an alphavirus RNA replicase constitute an alternative to conventional DNA plasmids with promise for DNA vaccination in humans. Replicase activity amplifies the levels of transgene mRNA through a copying process involving double-stranded (ds) RNA intermediates, which contribute to vaccine immunogenicity by activating innate antiviral responses. Toll-like receptor (TLR) 3 is a dsRNA innate immune receptor expressed by antigen-presenting dendritic cells (DC). Here, we test the hypothesis that TLR3 is necessary for the immunogenicity of replicon plasmid based DNA vaccines. We show that mouse CD8α+ DC phagocytose dying replicon plasmid-transfected cells in vitro and are activated in a TLR3-dependent fashion by dsRNA present within those cells. However, we find that cytotoxic T cell responses to a replicon plasmid intramuscular vaccine are not diminished in the absence of TLR3 in vivo. Our results underscore the potential role of TLR3 in mediating immune activation by dsRNA-bearing replicon plasmid transfected cells and indicate that other innate sensing pathways can compensate for TLR3 absence in vivo.
PMCID: PMC2655288  PMID: 19052633
dendritic cells; toll-like receptors; double-stranded RNA; replicon vaccines
16.  Long-term activation of TLR3 by Poly(I:C) induces inflammation and impairs lung function in mice 
Respiratory Research  2009;10(1):43.
The immune mechanisms associated with infection-induced disease exacerbations in asthma and COPD are not fully understood. Toll-like receptor (TLR) 3 has an important role in recognition of double-stranded viral RNA, which leads to the production of various inflammatory mediators. Thus, an understanding of TLR3 activation should provide insight into the mechanisms underlying virus-induced exacerbations of pulmonary diseases.
TLR3 knock-out (KO) mice and C57B6 (WT) mice were intranasally administered repeated doses of the synthetic double stranded RNA analog poly(I:C).
There was a significant increase in total cells, especially neutrophils, in BALF samples from poly(I:C)-treated mice. In addition, IL-6, CXCL10, JE, KC, mGCSF, CCL3, CCL5, and TNFα were up regulated. Histological analyses of the lungs revealed a cellular infiltrate in the interstitium and epithelial cell hypertrophy in small bronchioles. Associated with the pro-inflammatory effects of poly(I:C), the mice exhibited significant impairment of lung function both at baseline and in response to methacholine challenge as measured by whole body plethysmography and an invasive measure of airway resistance. Importantly, TLR3 KO mice were protected from poly(I:C)-induced changes in lung function at baseline, which correlated with milder inflammation in the lung, and significantly reduced epithelial cell hypertrophy.
These findings demonstrate that TLR3 activation by poly(I:C) modulates the local inflammatory response in the lung and suggest a critical role of TLR3 activation in driving lung function impairment. Thus, TLR3 activation may be one mechanism through which viral infections contribute toward exacerbation of respiratory disease.
PMCID: PMC2694181  PMID: 19486528
17.  Brucella Control of Dendritic Cell Maturation Is Dependent on the TIR-Containing Protein Btp1 
PLoS Pathogens  2008;4(2):e21.
Brucella is an intracellular pathogen able to persist for long periods of time within the host and establish a chronic disease. We show that soon after Brucella inoculation in intestinal loops, dendritic cells from ileal Peyer's patches become infected and constitute a cell target for this pathogen. In vitro, we found that Brucella replicates within dendritic cells and hinders their functional activation. In addition, we identified a new Brucella protein Btp1, which down-modulates maturation of infected dendritic cells by interfering with the TLR2 signaling pathway. These results show that intracellular Brucella is able to control dendritic cell function, which may have important consequences in the development of chronic brucellosis.
Author Summary
A key determinant for intracellular pathogenic bacteria to induce infectious diseases is their ability to avoid recognition by the host immune system. Although most microorganisms internalized by host cells are efficiently cleared, Brucella behave as a Trojan horse causing a zoonosis called brucellosis that affects both humans and animals. Here we show that pathogenic Brucella are able to target host cell defense mechanisms by controlling the function of the sentinels of the immune system, the dendritic cells. In particular, the Brucella TIR-containing protein (Btp1) targets the Toll-like receptor 2 activation pathway, which is a major host response system involved in bacterial recognition. Btp1 is involved in the inhibition of dendritic cell maturation. The direct consequence is a control of inflammatory cytokine secretion and antigen presentation to T lymphocytes. These bacterial proteins are not specific for Brucella and have been identified in other pathogens and may be part of a general virulence mechanism used by several intracellular pathogens to induce disease.
PMCID: PMC2233671  PMID: 18266466
18.  Plexin-B1 plays a redundant role during mouse development and in tumour angiogenesis 
Plexins are a large family of transmembrane receptors for the Semaphorins, known for their role in the assembly of neural circuitry. More recently, Plexins have been implicated in diverse biological functions, including vascular growth, epithelial tissue morphogenesis and tumour development. In particular, PlexinB1, the receptor for Sema4D, has been suggested to play a role in neural development and in tumour angiogenesis, based on in vitro studies. However, the tissue distribution of PlexinB1 has not been extensively studied and the functional relevance of this receptor in vivo still awaits experimental testing. In order to shed light on PlexinB1 function in vivo, we therefore undertook the genomic targeting of the mouse gene to obtain loss of function mutants.
This study shows that PlexinB1 receptor and its putative ligand, Sema4D, have a selective distribution in nervous and epithelial tissues during development and in the adult. PlexinB1 and Sema4D show largely complementary cell distribution in tissues, consistent with the idea that PlexinB1 acts as the receptor for Sema4D in vivo. Interestingly, PlexinB1 is also expressed in certain tissues in the absence of Sema4D, suggesting Sema4D independent activities. High expression of PlexinB1 was found in lung, kidney, liver and cerebellum.
Mutant mice lacking expression of semaphorin receptor PlexinB1 are viable and fertile. Although the axon collapsing activity of Sema4D is impaired in PlexinB1 deficient neurons, we could not detect major defects in development, or in adult histology and basic functional parameters of tissues expressing PlexinB1. Moreover, in the absence of PlexinB1 the angiogenic response induced by orthotopically implanted tumours was not affected, suggesting that the expression of this semaphorin receptor in endothelial cells is redundant.
Our expression analysis suggests a multifaceted role of PlexinB1 during mouse development and tissue homeostasis in the adult. Nonetheless, the genetic deletion of PlexinB1 does not result in major developmental defects or clear functional abnormalities. We infer that PlexinB1 plays a redundant role in mouse development and it is not strictly required for tumour induced angiogenesis.
PMCID: PMC1890291  PMID: 17519029
19.  Detrimental Contribution of the Toll-Like Receptor (TLR)3 to Influenza A Virus–Induced Acute Pneumonia 
PLoS Pathogens  2006;2(6):e53.
Influenza A virus (IAV) is the etiological agent of a highly contagious acute respiratory disease that causes epidemics and considerable mortality annually. Recently, we demonstrated, using an in vitro approach, that the pattern recognition Toll-like receptor (TLR)3 plays a key role in the immune response of lung epithelial cells to IAV. In view of these data and the fact that the functional role of TLR3 in vivo is still debated, we designed an investigation to better understand the role of TLR3 in the mechanisms of IAV pathogenesis and host immune response using an experimental murine model. The time-course of several dynamic parameters, including animal survival, respiratory suffering, viral clearance, leukocyte recruitment into the airspaces and secretion of critical inflammatory mediators, was compared in infected wild-type and TLR3−/− mice. First, we found that the pulmonary expression of TLR3 is constitutive and markedly upregulated following influenza infection in control mice. Notably, when compared to wild-type mice, infected TLR3−/− animals displayed significantly reduced inflammatory mediators, including RANTES (regulated upon activation, normal T cell expressed and secreted), interleukin-6, and interleukin-12p40/p70 as well as a lower number of CD8+ T lymphocytes in the bronchoalveolar airspace. More important, despite a higher viral production in the lungs, mice deficient in TLR3 had an unexpected survival advantage. Hence, to our knowledge, our findings show for the first time that TLR3-IAV interaction critically contributes to the debilitating effects of a detrimental host inflammatory response.
Influenza A virus (IAV) is responsible for highly contagious acute respiratory disease. Recent concerns have risen concerning a possible influenza pandemic in the near future. Thus, a better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient means of prevention and treatment of influenza. The Toll-like receptor (TLR)3 is a member of a family of receptors that detects microbes and triggers host defenses. We previously demonstrated using an in vitro approach, that the TLR3 plays a key role in the response of lung epithelial cells to IAV. Here, we used a mouse model to dissect the in vivo importance of TLR3-dependent responses during influenza. The time-course of several parameters, including animal survival, respiratory distress, viral clearance, and inflammation, was compared in infected control wild-type and TLR3-deficient mice. Our findings reveal that TLR3−/− mice have an unexpected advantage against IAV challenge as we show for the first time that a reduction of TLR3-mediated inflammatory response reduces the clinical manifestations of IAV-induced pneumonia.
PMCID: PMC1475659  PMID: 16789835
20.  Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus 
Systemic autoimmune disease in humans and mice is characterized by loss of immunologic tolerance to a restricted set of self-nuclear antigens. Autoantigens, such as double-stranded (ds) DNA and the RNA-containing Smith antigen (Sm), may be selectively targeted in systemic lupus erythematosus because of their ability to activate a putative common receptor. Toll-like receptor 9 (TLR9), a receptor for CpG DNA, has been implicated in the activation of autoreactive B cells in vitro, but its role in promoting autoantibody production and disease in vivo has not been determined. We show that in TLR9-deficient lupus-prone mice, the generation of anti-dsDNA and antichromatin autoantibodies is specifically inhibited. Other autoantibodies, such as anti-Sm, are maintained and even increased in TLR9-deficient mice. In contrast, ablation of TLR3, a receptor for dsRNA, did not inhibit the formation of autoantibodies to either RNA- or DNA-containing antigens. Surprisingly, we found that despite the lack of anti-dsDNA autoantibodies in TLR9-deficient mice, there was no effect on the development of clinical autoimmune disease or nephritis. These results demonstrate a specific requirement for TLR9 in autoantibody formation in vivo and indicate a critical role for innate immune activation in autoimmunity.
PMCID: PMC2212997  PMID: 16027240
21.  Complementation of Lymphotoxin α Knockout Mice with Tumor Necrosis Factor–expressing Transgenes Rectifies Defective Splenic Structure and Function  
Lymphotoxin (LT)α knockout mice, as well as double LTα/tumor necrosis factor (TNF) knockout mice, show a severe splenic disorganization with nonsegregating T/B cell zones and complete absence of primary B cell follicles, follicular dendritic cell (FDC) networks, and germinal centers. In contrast, as shown previously and confirmed in this study, LTβ-deficient mice show much more conserved T/B cell areas and a reduced but preserved capacity to form germinal centers and FDC networks. We show here that similar to the splenic phenotype of LTβ-deficient mice, complementation of LTα knockout mice with TNF-expressing transgenes leads to a p55 TNF receptor–dependent restoration of B/T cell zone segregation and a partial preservation of primary B cell follicles, FDC networks, and germinal centers. Notably, upon lipopolysaccharide challenge, LTα knockout mice fail to produce physiological levels of TNF both in peritoneal macrophage supernatants and in their serum, indicating a coinciding deficiency in TNF expression. These findings suggest that defective TNF expression contributes to the complex phenotype of the LTα knockout mice, and uncover a predominant role for TNF and its p55 TNF receptor in supporting, even in the absence of LTα, the development and maintenance of splenic B cell follicles, FDC networks, and germinal centers.
PMCID: PMC2213356  PMID: 9705956
splenic architecture; gene targeting; complementation; follicular dendritic cells; germinal centers
22.  Protective role of membrane tumour necrosis factor in the host’s resistance to mycobacterial infection 
Immunology  2008;125(4):522-534.
Tumour necrosis factor-α (TNF-α) plays a critical role in the recruitment and activation of mononuclear cells in mycobacterial infection. The role of membrane TNF, in host resistance against Mycobacterium bovis bacille Calmette–Guérin (BCG), was tested in knock-in mice in which the endogenous TNF was replaced by a non-cleavable and regulated allele (Δ1–12, TNFtm/tm). While 100% of mice with complete TNF deficiency (TNF−/−) succumbed to infection, 50% of TNFtm/tm mice were able to control M. bovis BCG infection and survived the experimental period. Membrane expressed TNF allowed a substantial recruitment of activated T cells and macrophages with granuloma formation and expression of bactericidal inducible nitric oxide synthase (iNOS). Using virulent Mycobacterium tuberculosis infection we confirm that membrane TNF conferred partial protection. Infection in TNFtm/tm double transgenic mice with TNF-R1 or TNF-R2 suggest protection is mediated through TNF-R2 signalling. Therefore, the data suggest that membrane-expressed TNF plays a critical role in host defence to mycobacterial infection and may partially substitute for soluble TNF.
PMCID: PMC2612548  PMID: 18544042
BCG; granuloma; H37Rv; membrane Δ1-12 TNF; Mycobacterium; T-cell recruitment; TNF-deficiency

Results 1-22 (22)