PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-23 (23)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Enhanced Lymph Vessel Density, Remodeling, and Inflammation Are Reflected by Gene Expression Signatures in Dermal Lymphatic Endothelial Cells in Type 2 Diabetes 
Diabetes  2013;62(7):2509-2529.
Type 2 diabetes is associated with microvascular damage that causes frequent infections in the skin and chronic ulcers as a result of impaired wound healing. To trace the pathological changes, we performed a comprehensive analysis of lymphatic vessels in the skin of type 2 diabetic versus nondiabetic patients. The dermis revealed enhanced lymphatic vessel density, and transcriptional profiling of ex vivo isolated lymphatic endothelial cells (LECs) identified 160 genes differentially expressed between type 2 diabetic and nondiabetic LECs. Bioinformatic analysis of deregulated genes uncovered sets functionally related to inflammation, lymphatic vessel remodeling, lymphangiogenesis, and lipid and small molecule transport. Furthermore, we traced CD68+ macrophage accumulation and concomitant upregulation of tumor necrosis factor-α (TNF-α) levels in type 2 diabetic skin. TNF-α treatment of LECs and its specific blockade in vitro reproduced differential regulation of a gene set that led to enhanced LEC mobility and macrophage attachment, which was mediated by the LEC-derived chemokine CXCL10. This study identifies lymph vessel gene signatures directly correlated with type 2 diabetes skin manifestations. In addition, we provide evidence for paracrine cross-talk fostering macrophage recruitment to LECs as one pathophysiological process that might contribute to aberrant lymphangiogenesis and persistent inflammation in the skin.
doi:10.2337/db12-0844
PMCID: PMC3712036  PMID: 23423575
2.  In vivo imaging of kidney glomeruli transplanted into the anterior chamber of the mouse eye 
Scientific Reports  2014;4:3872.
Multiphoton microscopy enables live imaging of the renal glomerulus. However, repeated in vivo imaging of the same glomerulus over extended periods of time and the study of glomerular function independent of parietal epithelial and proximal tubular cell effects has not been possible so far. Here, we report a novel approach for non-invasive imaging of acapsular glomeruli transplanted into the anterior chamber of the mouse eye. After microinjection, glomeruli were capable of engrafting on the highly vascularized iris. Glomerular structure was preserved, as demonstrated by podocyte specific expression of cyan fluorescent protein and by electron microscopy. Injection of fluorescence-labeled dextrans of various molecular weights allowed visualization of glomerular filtration and revealed leakage of 70 kDa dextran in an inducible model of proteinuria. Our findings demonstrate functionality and long-term survival of glomeruli devoid of Bowman's capsule and provide a novel approach for non-invasive longitudinal in vivo study of glomerular physiology and pathophysiology.
doi:10.1038/srep03872
PMCID: PMC3902446  PMID: 24464028
3.  Correction: Role of the Polarity Protein Scribble for Podocyte Differentiation and Maintenance 
PLoS ONE  2014;9(1):10.1371/annotation/2c0c1c61-0627-4794-b6f2-01fc4db84dcb.
doi:10.1371/annotation/2c0c1c61-0627-4794-b6f2-01fc4db84dcb
PMCID: PMC3882177
4.  A Kinase-Independent Function of CDK6 Links the Cell Cycle to Tumor Angiogenesis 
Cancer Cell  2013;24(2):167-181.
Summary
In contrast to its close homolog CDK4, the cell cycle kinase CDK6 is expressed at high levels in lymphoid malignancies. In a model for p185BCR-ABL+ B-acute lymphoid leukemia, we show that CDK6 is part of a transcription complex that induces the expression of the tumor suppressor p16INK4a and the pro-angiogenic factor VEGF-A. This function is independent of CDK6’s kinase activity. High CDK6 expression thus suppresses proliferation by upregulating p16INK4a, providing an internal safeguard. However, in the absence of p16INK4a, CDK6 can exert its full tumor-promoting function by enhancing proliferation and stimulating angiogenesis. The finding that CDK6 connects cell-cycle progression to angiogenesis confirms CDK6’s central role in hematopoietic malignancies and could underlie the selection pressure to upregulate CDK6 and silence p16INK4a.
Graphical Abstract
doi:10.1016/j.ccr.2013.07.012
PMCID: PMC3743049  PMID: 23948297
5.  Immune cells control skin lymphatic electrolyte homeostasis and blood pressure 
The Journal of Clinical Investigation  2013;123(7):2803-2815.
The skin interstitium sequesters excess Na+ and Cl– in salt-sensitive hypertension. Mononuclear phagocyte system (MPS) cells are recruited to the skin, sense the hypertonic electrolyte accumulation in skin, and activate the tonicity-responsive enhancer-binding protein (TONEBP, also known as NFAT5) to initiate expression and secretion of VEGFC, which enhances electrolyte clearance via cutaneous lymph vessels and increases eNOS expression in blood vessels. It is unclear whether this local MPS response to osmotic stress is important to systemic blood pressure control. Herein, we show that deletion of TonEBP in mouse MPS cells prevents the VEGFC response to a high-salt diet (HSD) and increases blood pressure. Additionally, an antibody that blocks the lymph-endothelial VEGFC receptor, VEGFR3, selectively inhibited MPS-driven increases in cutaneous lymphatic capillary density, led to skin Cl– accumulation, and induced salt-sensitive hypertension. Mice overexpressing soluble VEGFR3 in epidermal keratinocytes exhibited hypoplastic cutaneous lymph capillaries and increased Na+, Cl–, and water retention in skin and salt-sensitive hypertension. Further, we found that HSD elevated skin osmolality above plasma levels. These results suggest that the skin contains a hypertonic interstitial fluid compartment in which MPS cells exert homeostatic and blood pressure–regulatory control by local organization of interstitial electrolyte clearance via TONEBP and VEGFC/VEGFR3–mediated modification of cutaneous lymphatic capillary function.
doi:10.1172/JCI60113
PMCID: PMC3696542  PMID: 23722907
6.  Type I Interferons Promote Fatal Immunopathology by Regulating Inflammatory Monocytes and Neutrophils during Candida Infections 
PLoS Pathogens  2012;8(7):e1002811.
Invasive fungal infections by Candida albicans (Ca) are a frequent cause of lethal sepsis in intensive care unit patients. While a contribution of type I interferons (IFNs-I) in fungal sepsis remains unknown, these immunostimulatory cytokines mediate the lethal effects of endotoxemia and bacterial sepsis. Using a mouse model lacking a functional IFN-I receptor (Ifnar1−/−), we demonstrate a remarkable protection against invasive Ca infections. We discover a mechanism whereby IFN-I signaling controls the recruitment of inflammatory myeloid cells, including Ly6Chi monocytes and neutrophils, to infected kidneys by driving expression of the chemokines CCL2 and KC. Within kidneys, monocytes differentiate into inflammatory DCs but fail to functionally mature in Ifnar1−/− mice, as demonstrated by the impaired upregulation of the key activation markers PDCA1 and iNOS. The increased activity of inflammatory monocytes and neutrophils results in hyper-inflammation and lethal kidney pathology. Pharmacological diminution of monocytes and neutrophils by treating mice with pioglitazone, a synthetic agonist of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPAR-γ), strongly reduces renal immunopathology during Ca infection and improves mouse survival. Taken together, our data connect for the first time the sepsis-promoting functions of IFNs-I to the CCL2-mediated recruitment and the activation of inflammatory monocytes/DCs with high host-destructing potency. Moreover, our data demonstrate a therapeutic relevance of PPAR-γ agonists for microbial infectious diseases where inflammatory myeloid cells may contribute to fatal tissue damage.
Author Summary
Inflammation constitutes a major host response in many microbial infections. Innate immune cells orchestrate the inflammatory response to kill pathogens and clear infections. However, invasive infections by pathogenic microbes including the fungus Candida albicans, can result in an uncontrolled hyper-inflammatory response, leading to severe host damage and sepsis. Type I interferons constitute a hallmark of protective innate immunity in viral and bacterial infections, but at the same time have been notoriously known for their sepsis-promoting effects in numerous experimental inflammation models. Here, we show that type I interferon-signaling mediates the lethal hyper-inflammatory response during systemic mouse infections with C. albicans. Following fungal infections, type I interferons promote the recruitment and activation of inflammatory monocytes and neutrophils to infected organs. The high abundance and activity of inflammatory phagocytes lead to fatal tissue damage. Remarkably, we show that the pharmacological suppression of these inflammatory cells with the drug pioglitazone reduces immunopathology and sepsis-related lethality, suggesting a novel therapeutic option to combat fungal sepsis. In conclusion, our data couple the sepsis-promoting role of type I interferons to the host-destructive activity of inflammatory monocytes and neutrophils. We propose that therapeutic approaches dampening hyper-inflammation might be of general importance in microbial diseases where deleterious immunopathology occurs.
doi:10.1371/journal.ppat.1002811
PMCID: PMC3406095  PMID: 22911155
7.  Role of the Polarity Protein Scribble for Podocyte Differentiation and Maintenance 
PLoS ONE  2012;7(5):e36705.
The kidney filter represents a unique assembly of podocyte epithelial cells that tightly enwrap the glomerular capillaries with their complex foot process network. While deficiency of the polarity proteins Crumbs and aPKC result in impaired podocyte foot process architecture, the function of basolateral polarity proteins for podocyte differentiation and maintenance remained unclear. Here we report, that Scribble is expressed in developing podocytes, where it translocates from the lateral aspects of immature podocytes to the basal cell membrane and foot processes of mature podocytes. Immunogold electron microscopy reveals membrane associated localisation of Scribble predominantly at the basolateral site of foot processes. To further study the role of Scribble for podocyte differentiation Scribbleflox/flox mice were generated by introducing loxP-sites into the Scribble introns 1 and 8 and these mice were crossed to NPHS2.Cre mice and Cre deleter mice. Podocyte-specific Scribble knockout mice develop normally and display no histological, ultrastructural or clinical abnormalities up to 12 months of age. In addition, no increased susceptibility to glomerular stress could be detected in these mice. In contrast, constitutive Scribble knockout animals die during embryonic development indicating the fundamental importance of Scribble for embryogenesis. Like in podocyte-specific Scribble knockout mice, the development of podocyte foot processes and the slit diaphragm was unaffected in kidney cultures from constitutive Scribble knockout animals. In summary these results indicate that basolateral polarity signaling via Scribble is dispensable for podocyte function, highlighting the unique feature of podocyte development with its significant apical membrane expansions being dominated by apical polarity complexes rather than by basolateral polarity signaling.
doi:10.1371/journal.pone.0036705
PMCID: PMC3346764  PMID: 22586490
8.  Decentral gene expression analysis for ER+/Her2− breast cancer: results of a proficiency testing program for the EndoPredict assay 
Virchows Archiv  2012;460(3):251-259.
Gene expression profiles provide important information about the biology of breast tumors and can be used to develop prognostic tests. However, the implementation of quantitative RNA-based testing in routine molecular pathology has not been accomplished, so far. The EndoPredict assay has recently been described as a quantitative RT-PCR-based multigene expression test to identify a subgroup of hormone–receptor-positive tumors that have an excellent prognosis with endocrine therapy only. To transfer this test from bench to bedside, it is essential to evaluate the test–performance in a multicenter setting in different molecular pathology laboratories. In this study, we have evaluated the EndoPredict (EP) assay in seven different molecular pathology laboratories in Germany, Austria, and Switzerland. A set of ten formalin-fixed paraffin-embedded tumors was tested in the different labs, and the variance and accuracy of the EndoPredict assays were determined using predefined reference values. Extraction of a sufficient amount of RNA and generation of a valid EP score was possible for all 70 study samples (100%). The EP scores measured by the individual participants showed an excellent correlation with the reference values, respectively, as reflected by Pearson correlation coefficients ranging from 0.987 to 0.999. The Pearson correlation coefficient of all values compared to the reference value was 0.994. All laboratories determined EP scores for all samples differing not more than 1.0 score units from the pre-defined references. All samples were assigned to the correct EP risk group, resulting in a sensitivity and specificity of 100%, a concordance of 100%, and a kappa of 1.0. Taken together, the EndoPredict test could be successfully implemented in all seven participating laboratories and is feasible for reliable decentralized assessment of gene expression in luminal breast cancer.
doi:10.1007/s00428-012-1204-4
PMCID: PMC3306560  PMID: 22371223
Breast cancer; Prognosis; mRNA; Quality control
9.  Putting the brakes on mammary tumorigenesis: Loss of STAT1 predisposes to intraepithelial neoplasias 
Oncotarget  2011;2(12):1043-1054.
Multiparous Stat1−/− mice spontaneously develop mammary tumors with increased incidence: at an average age of 12 months, 55% of the animals suffer from mammary cancer, although the histopathology is heterogeneous. We consistently observed mosaic expression or down-regulation of STAT1 protein in wild-type mammary cancer evolving in the control group. Transplantation experiments show that tumorigenesis in Stat1−/− mice is partially influenced by impaired CTL mediated tumor surveillance. Additionally, STAT1 exerts an intrinsic tumor suppressing role by controlling and blocking proliferation of the mammary epithelium. Loss of STAT1 in epithelial cells enhances cell growth in both transformed and primary cells. The increased proliferative capacity leads to the loss of structured acini formation in 3D-cultures. Analogous effects were observed when Irf1−/− epithelial cells were used. Accordingly, the rate of mammary intraepithelial neoplasias (MINs) is increased in Stat1−/− animals: MINs represent the first step towards mammary tumors. The experiments characterize STAT1/IRF1 as a key growth inhibitory and tumor suppressive signaling pathway that prevents mammary cancer formation by maintaining growth control. Furthermore, they define the loss of STAT1 as a predisposing event via enhanced MIN formation.
PMCID: PMC3282066  PMID: 22185785
Stat1; MIN; IRF1; mammary cancer; tumorsurveillance
10.  Role of mTOR in podocyte function and diabetic nephropathy in humans and mice 
The Journal of Clinical Investigation  2011;121(6):2197-2209.
Chronic glomerular diseases, associated with renal failure and cardiovascular morbidity, represent a major health issue. However, they remain poorly understood. Here we have reported that tightly controlled mTOR activity was crucial to maintaining glomerular podocyte function, while dysregulation of mTOR facilitated glomerular diseases. Genetic deletion of mTOR complex 1 (mTORC1) in mouse podocytes induced proteinuria and progressive glomerulosclerosis. Furthermore, simultaneous deletion of both mTORC1 and mTORC2 from mouse podocytes aggravated the glomerular lesions, revealing the importance of both mTOR complexes for podocyte homeostasis. In contrast, increased mTOR activity accompanied human diabetic nephropathy, characterized by early glomerular hypertrophy and hyperfiltration. Curtailing mTORC1 signaling in mice by genetically reducing mTORC1 copy number in podocytes prevented glomerulosclerosis and significantly ameliorated the progression of glomerular disease in diabetic nephropathy. These results demonstrate the requirement for tightly balanced mTOR activity in podocyte homeostasis and suggest that mTOR inhibition can protect podocytes and prevent progressive diabetic nephropathy.
doi:10.1172/JCI44774
PMCID: PMC3104746  PMID: 21606591
11.  Angiopoietin-1 is essential in mouse vasculature during development and in response to injury 
The Journal of Clinical Investigation  2011;121(6):2278-2289.
Angiopoietin-1/Tek signaling is a critical regulator of blood vessel development, with conventional knockout of angiopoietin-1 or Tek in mice being embryonically lethal due to vascular defects. In addition, angiopoietin-1 is thought to be required for the stability of mature vessels. Using a Cre-Lox conditional gene targeting approach, we have studied the role of angiopoietin-1 in embryonic and adult vasculature. We report here that angiopoietin-1 is critical for regulating both the number and diameter of developing vessels but is not required for pericyte recruitment. Cardiac-specific knockout of angiopoietin-1 reproduced the phenotype of the conventional knockout, demonstrating that the early vascular abnormalities arise from flow-dependent defects. Strikingly, deletion in the entire embryo after day E13.5 produced no immediate vascular phenotype. However, when combined with injury or microvascular stress, angiopoietin-1 deficiency resulted in profound organ damage, accelerated angiogenesis, and fibrosis. These findings redefine our understanding of the biological roles of angiopoietin-1: it is dispensable in quiescent vessels but has a powerful ability to modulate the vascular response after injury.
doi:10.1172/JCI46322
PMCID: PMC3104773  PMID: 21606590
12.  Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse 
The Journal of Clinical Investigation  2011;121(5):2000-2012.
In individuals with mammary carcinoma, the most relevant prognostic predictor of distant organ metastasis and clinical outcome is the status of axillary lymph node metastasis. Metastases form initially in axillary sentinel lymph nodes and progress via connecting lymphatic vessels into postsentinel lymph nodes. However, the mechanisms of consecutive lymph node colonization are unknown. Through the analysis of human mammary carcinomas and their matching axillary lymph nodes, we show here that intrametastatic lymphatic vessels and bulk tumor cell invasion into these vessels highly correlate with formation of postsentinel metastasis. In an in vitro model of tumor bulk invasion, human mammary carcinoma cells caused circular defects in lymphatic endothelial monolayers. These circular defects were highly reminiscent of defects of the lymphovascular walls at sites of tumor invasion in vivo and were primarily generated by the tumor-derived arachidonic acid metabolite 12S-HETE following 15-lipoxygenase-1 (ALOX15) catalysis. Accordingly, pharmacological inhibition and shRNA knockdown of ALOX15 each repressed formation of circular defects in vitro. Importantly, ALOX15 knockdown antagonized formation of lymph node metastasis in xenografted tumors. Furthermore, expression of lipoxygenase in human sentinel lymph node metastases correlated inversely with metastasis-free survival. These results provide evidence that lipoxygenase serves as a mediator of tumor cell invasion into lymphatic vessels and formation of lymph node metastasis in ductal mammary carcinomas.
doi:10.1172/JCI44751
PMCID: PMC3083794  PMID: 21540548
13.  Nephrin Is Expressed on the Surface of Insulin Vesicles and Facilitates Glucose-Stimulated Insulin Release 
Diabetes  2009;59(1):190-199.
OBJECTIVE
Nephrin, an immunoglobulin-like protein essential for the function of the glomerular podocyte and regulated in diabetic nephropathy, is also expressed in pancreatic β-cells, where its function remains unknown. The aim of this study was to investigate whether diabetes modulates nephrin expression in human pancreatic islets and to explore the role of nephrin in β-cell function.
RESEARCH DESIGN AND METHODS
Nephrin expression in human pancreas and in MIN6 insulinoma cells was studied by Western blot, PCR, confocal microscopy, subcellular fractionation, and immunogold labeling. Islets from diabetic (n = 5) and nondiabetic (n = 7) patients were compared. Stable transfection and siRNA knockdown in MIN-6 cells/human islets were used to study nephrin function in vitro and in vivo after transplantation in diabetic immunodeficient mice. Live imaging of green fluorescent protein (GFP)-nephrin–transfected cells was used to study nephrin endocytosis.
RESULTS
Nephrin was found at the plasma membrane and on insulin vesicles. Nephrin expression was decreased in islets from diabetic patients when compared with nondiabetic control subjects. Nephrin transfection in MIN-6 cells/pseudoislets resulted in higher glucose-stimulated insulin release in vitro and in vivo after transplantation into immunodeficient diabetic mice. Nephrin gene silencing abolished stimulated insulin release. Confocal imaging of GFP-nephrin–transfected cells revealed nephrin endocytosis upon glucose stimulation. Actin stabilization prevented nephrin trafficking as well as nephrin-positive effect on insulin release.
CONCLUSIONS
Our data suggest that nephrin is an active component of insulin vesicle machinery that may affect vesicle-actin interaction and mobilization to the plasma membrane. Development of drugs targeting nephrin may represent a novel approach to treat diabetes.
doi:10.2337/db09-0655
PMCID: PMC2797921  PMID: 19833886
14.  Novel siRNA Delivery System to Target Podocytes In Vivo 
PLoS ONE  2010;5(3):e9463.
Podocytes are injured in several glomerular diseases. To alter gene expression specifically in podocytes in vivo, we took advantage of their active endocytotic machinery and developed a method for the targeted delivery of small interfering ribonucleic acids (siRNA). We generated an anti-mouse podocyte antibody that binds to rat and mouse podocytes in vivo. The polyclonal IgG antibody was cleaved into monovalent fragments, while preserving the antigen recognition sites. One Neutravidin molecule was linked to each monovalent IgG via the available sulfohydryl group. Protamine, a polycationic nuclear protein and universal adaptor for anionic siRNA, was linked to the neutravidin via biotin. The delivery system was named shamporter (sheep anti mouse podocyte transporter). Injection of shamporter coupled with either nephrin siRNA or TRPC6 siRNA via tail vein into normal rats substantially reduced the protein levels of nephrin or TRPC6 respectively, measured by western blot analysis and immunostaining. The effect was target specific because other podocyte-specific genes remained unchanged. Shamporter + nephrin siRNA induced transient proteinuria in rats. Control rats injected with shamporter coupled to control-siRNA showed no changes. These results show for the first time that siRNA can be delivered efficiently and specifically to podocytes in vivo using an antibody-delivery system.
doi:10.1371/journal.pone.0009463
PMCID: PMC2830889  PMID: 20209128
15.  Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice 
The Journal of Clinical Investigation  2010;120(4):1084-1096.
Injury and loss of podocytes are leading factors of glomerular disease and renal failure. The postmitotic podocyte is the primary glomerular target for toxic, immune, metabolic, and oxidant stress, but little is known about how this cell type copes with stress. Recently, autophagy has been identified as a major pathway that delivers damaged proteins and organelles to lysosomes in order to maintain cellular homeostasis. Here we report that podocytes exhibit an unusually high level of constitutive autophagy. Podocyte-specific deletion of autophagy-related 5 (Atg5) led to a glomerulopathy in aging mice that was accompanied by an accumulation of oxidized and ubiquitinated proteins, ER stress, and proteinuria. These changes resulted ultimately in podocyte loss and late-onset glomerulosclerosis. Analysis of pathophysiological conditions indicated that autophagy was substantially increased in glomeruli from mice with induced proteinuria and in glomeruli from patients with acquired proteinuric diseases. Further, mice lacking Atg5 in podocytes exhibited strongly increased susceptibility to models of glomerular disease. These findings highlight the importance of induced autophagy as a key homeostatic mechanism to maintain podocyte integrity. We postulate that constitutive and induced autophagy is a major protective mechanism against podocyte aging and glomerular injury, representing a putative target to ameliorate human glomerular disease and aging-related loss of renal function.
doi:10.1172/JCI39492
PMCID: PMC2846040  PMID: 20200449
16.  Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis 
Nature medicine  2008;14(10):1088-1096.
Pauci-immune focal necrotizing glomerulonephritis (FNGN) is a severe inflammatory disease associated with autoantibodies to neutrophil cytoplasmic antigens (ANCA). Here we characterize autoantibodies to lysosomal membrane protein-2 (LAMP-2) and show that they are a new ANCA subtype present in almost all individuals with FNGN. Consequently, its prevalence is nearly twice that of the classical ANCAs that recognize myeloperoxidase or proteinase-3. Furthermore, antibodies to LAMP-2 cause pauci-immune FNGN when injected into rats, and a monoclonal antibody to human LAMP-2 (H4B4) induces apoptosis of human microvascular endothelium in vitro. The autoantibodies in individuals with pauci-immune FNGN commonly recognize a human LAMP-2 epitope (designated P41–49) with 100% homology to the bacterial adhesin FimH, with which they cross-react. Rats immunized with FimH develop pauci-immune FNGN and also develop antibodies to rat and human LAMP-2. Finally, we show that infections with fimbriated pathogens are common before the onset of FNGN. Thus, FimH-triggered autoimmunity to LAMP-2 provides a previously undescribed clinically relevant molecular mechanism for the development of pauci-immune FNGN.
doi:10.1038/nm.1874
PMCID: PMC2751601  PMID: 18836458
17.  Proteolytic processing of dynamin by cytoplasmic cathepsin L is a mechanism for proteinuric kidney disease 
Journal of Clinical Investigation  2007;117(8):2095-2104.
Kidney podocytes and their foot processes maintain the ultrafiltration barrier and prevent urinary protein loss (proteinuria). Here we show that the GTPase dynamin is essential for podocyte function. During proteinuric kidney disease, induction of cytoplasmic cathepsin L leads to cleavage of dynamin at an evolutionary conserved site, resulting in reorganization of the podocyte actin cytoskeleton and proteinuria. Dynamin mutants that lack the cathepsin L site, or render the cathepsin L site inaccessible through dynamin self-assembly, are resistant to cathepsin L cleavage. When delivered into mice, these mutants restored podocyte function and resolve proteinuria. Our study identifies dynamin as a critical regulator of renal permselectivity that is specifically targeted by proteolysis under pathological conditions.
doi:10.1172/JCI32022
PMCID: PMC1934589  PMID: 17671649
18.  Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells 
Background
Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells.
Results
We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA) identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly, treatment with the DNA methyltransferase inhibitor 5-azaCdR in combination with trichostatin A (TSA) downregulated podoplanin mRNA levels in MG63 cells, and region-specific in vitro methylation of the distal promoter suggested that DNA methylation rather enhanced than hindered PDPN transcription in both cell types.
Conclusion
These data establish that in human osteoblast-like MG63 cells, Sp1 and Sp3 stimulate basal PDPN transcription in a concerted, yet independent manner, whereas Saos-2 cells lack sufficient nuclear Sp protein amounts for transcriptional activation. Moreover, a highly methylated chromatin conformation of the distal promoter region confers cell-type specific podoplanin upregulation versus Saos-2 cells.
doi:10.1186/1471-2199-8-20
PMCID: PMC1828165  PMID: 17343736
19.  The crucial role of macrophages in lymphangiogenesis 
Journal of Clinical Investigation  2005;115(9):2316-2319.
Lymphangiogenesis is associated with pathological processes such as the metastatic spread of carcinoma cells and organization of immunologically active lymphocytic infiltrates following organ transplantation. It has not yet been established whether expansion of the lymphatic vascular meshwork is driven by incorporation of progenitor cells or by local endothelial cell division. In this issue of the JCI, Maruyama et al. provide evidence that after mouse corneal transplant, CD11b+ macrophages infiltrate the corneal stroma and transdifferentiate into lymphatic endothelial cell clusters that join existing lymphatic vessels. In complementary in vitro experiments, murine peritoneal macrophages expressed lymphatic endothelial markers and formed vessel-like protrusions. These findings add yet another facet to the plasticity of macrophages, which are already known to transform from naive monocytes into VEGF-C–producing cells. Thus, macrophages support lymphangiogenesis in 2 different ways, either by transdifferentiating and directly incorporating into the endothelial layer or by stimulating division of preexistent local lymphatic endothelial cells.
doi:10.1172/JCI26354
PMCID: PMC1193892  PMID: 16138185
20.  Isolation and Characterization of Dermal Lymphatic and Blood Endothelial Cells Reveal Stable and Functionally Specialized Cell Lineages 
A plexus of lymphatic vessels guides interstitial fluid, passenger leukocytes, and tumor cells toward regional lymph nodes. Microvascular endothelial cells (ECs) of lymph channels (LECs) are difficult to distinguish from those of blood vessels (BECs) because both express a similar set of markers, such as CD31, CD34, podocalyxin, von Willebrand factor (vWF), etc. Analysis of the specific properties of LECs was hampered so far by lack of tools to isolate LECs. Recently, the 38-kD mucoprotein podoplanin was found to be expressed by microvascular LECs but not BECs in vivo. Here we isolated for the first time podoplanin+ LECs and podoplanin− BECs from dermal cell suspensions by multicolor flow cytometry. Both EC types were propagated and stably expressed VE-cadherin, CD31, and vWF. Molecules selectively displayed by LECs in vivo, i.e., podoplanin, the hyaluronate receptor LYVE-1, and the vascular endothelial cell growth factor (VEGF)-C receptor, fms-like tyrosine kinase 4 (Flt-4)/VEGFR-3, were strongly expressed by expanded LECs, but not BECs. Conversely, BECs but not LECs expressed VEGF-C. LECs as well as BECs formed junctional contacts with similar molecular composition and ultrastructural features. Nevertheless, the two EC types assembled in vitro in vascular tubes in a strictly homotypic fashion. This EC specialization extends to the secretion of biologically relevant chemotactic factors: LECs, but not BECs, constitutively secrete the CC chemokine receptor (CCR)7 ligand secondary lymphoid tissue chemokine (SLC)/CCL21 at their basal side, while both subsets, upon activation, release macrophage inflammatory protein (MIP)-3α/CCL20 apically. These results demonstrate that LECs and BECs constitute stable and specialized EC lineages equipped with the potential to navigate leukocytes and, perhaps also, tumor cells into and out of the tissues.
PMCID: PMC2195953  PMID: 11560995
endothelial cell lineages; podoplanin; endothelial cell tube formation; vascular endothelial cell growth factors; chemokines
21.  Extrarenal effects on the pathogenesis and relapse of idiopathic nephrotic syndrome in Buffalo/Mna rats 
Buffalo/Mna rats spontaneously develop a focal segmental glomerulosclerosis with a histological pattern similar to the human disease. In this study, we investigated the potential of recurrence of the disease by transplantation of normal kidneys into Buffalo/Mna recipients. Kidneys from healthy LEW.1W rats were grafted into proteinuric 6-month-old Buffalo/Mna rats without or with specific tolerance induction following donor-specific transfusion (DST) aimed at controlling host anti-donor immune responses. The inverse combination was carried out to determine whether a proteinuric Buffalo/Mna kidney can recover its permselectivity in a normal environment. As a control, LEW.1W kidneys were grafted into Wistar Furth recipients. After transplantation without DST, recurrence of proteinuria in LEW.1W kidneys appeared at approximately 10 days, possibly associated with rejection of the graft. In the same combination with DST, proteinuria occurred after 20 days, and the attendant glomerular damage suggested that the initial kidney disease had recurred. Transplanted control animals remained free of proteinuria. In the opposite combination, the proteinuria and the lesions of Buffalo/Mna kidneys regressed after transplantation into healthy LEW.1W rats. The recurrence of proteinuria after transplantation in Buffalo/Mna and the remission of lesions in Buffalo/Mna kidneys transplanted into normal hosts suggests that Buffalo/Mna rats express circulating albuminuric factors, which may be relevant to the relapse of idiopathic nephrotic syndrome in humans.
doi:10.1172/JCI12858
PMCID: PMC150869  PMID: 11854321
23.  VEGF165 mediates glomerular endothelial repair 
Journal of Clinical Investigation  1999;104(7):913-923.
VEGF165, the most abundant isoform in man, is an angiogenic cytokine that also regulates vascular permeability. Its function in the renal glomerulus, where it is expressed in visceral epithelial and mesangial cells, is unknown. To assess the role of VEGF165 in glomerular disease, we administered a novel antagonist — a high-affinity, nuclease-resistant RNA aptamer coupled to 40-kDa polyethylene glycol (PEG) — to normal rats and to rats with mesangioproliferative nephritis, passive Heymann nephritis (PHN), or puromycin aminonucleoside nephrosis (PAN). In normal rats, antagonism of VEGF165 for 21 days failed to induce glomerular pathology or proteinuria. In rats with mesangioproliferative nephritis, the VEGF165 aptamer (but not a sequence-scrambled control RNA or PEG alone) led to a reduction of glomerular endothelial regeneration and an increase in endothelial cell death, provoking an 8-fold increase in the frequency of glomerular microaneurysms by day 6. In contrast, early leukocyte influx and the proliferation, activation, and matrix accumulation of mesangial cells were not affected in these rats. In rats with PHN or PAN, administration of the VEGF165 aptamer did not influence the course of proteinuria using various dosages and administration routes. These data identify VEGF165 as a factor of central importance for endothelial cell survival and repair in glomerular disease, and point to a potentially novel way to influence the course of glomerular diseases characterized by endothelial cell damage, such as various glomerulonephritides, thrombotic microangiopathies, or renal transplant rejection.
PMCID: PMC408553  PMID: 10510332

Results 1-23 (23)