PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-11 (11)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Structural Stereochemistry of Androstene Hormones Determines Interactions with Human Androgen, Estrogen, and Glucocorticoid Receptors 
DHEA, 17α-AED, 17β-AED, and 17β-AET exhibit strong biological activity that has been attributed to androgenic, estrogenic, or antiglucocorticoid activity in vivo and in vitro. This study compared DHEA, 17α-AED, 17β-AED, and 17β-AET for their ability to activate the human AR, ER, and GR and determine the relative androgenicity, estrogenicity, and glucocorticoid activity. The results show that, at the receptor level, these androstene hormones are weak AR and even weaker ER activators. Direct androstene hormone activation of the human AR, ERα, and ERβ may not be essential for their biological function. Similarly, these hormones indirectly activated the human GR, only in the presence of high dexamethasone concentrations. These results underscore the major difference between androstene hormone interactions with these nuclear receptors and their biological effects.
doi:10.1155/2013/203606
PMCID: PMC3981456
2.  Characterization of lysophosphatidic acid subspecies produced by autotaxin using a modified HPLC ESI-MS/MS method 
Lysophosphatidic acid (LPA) is a bioactive lipid with a plethora of biological functions including roles in cell survival, proliferation, and migration. Although high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC ESI-MS/MS) technology has been used to measure the levels of LPA in human blood, serum and plasma, current methods cannot readily detect the minute levels of LPA from cell culture. In this study, a modified HPLC ESI-MS/MS method with enhanced sensitivity was developed, which allows accurate measurements of LPA levels with a limit of quantitation at approximately 10 femtomoles. The method was validated by quantitation of LPA levels in the media of previously characterized cell lines ectopically expressing autotaxin. Specifically, autotaxin overexpression induced an increase in the 16:0, 18:2, 18:1, 18:0, and 20:4 subspecies of LPA, but not the 22:6 LPA subspecies. Lastly, this HPLC ESI-MS/MS method was cross-validated via biological assays previously utilized to assay LPA levels. Hence, this HPLC ESI-MS/MS method will allow researchers to measure in vitro LPA levels and also distinguish between specific LPA subspecies for the delineation of individual biological mechanisms.
doi:10.1039/C1AY05459G
PMCID: PMC3956132  PMID: 24648853
3.  Epoxyeicosatrienoic Acids Are Involved in the C70 Fullerene Derivative Induced Control of Allergic Asthma 
Background
Fullerenes are molecules being investigated for a wide range of therapeutic applications. We have shown previously that certain fullerene derivatives (FD) inhibit mast cell (MC) function in vitro, and here we examine their in vivo therapeutic effect on asthma, a disease in which MC play a predominant role.
Objective
To determine whether if an efficient MC-stabilizing FD (TGA) can inhibit asthma pathogenesis in vivo and to examine its in vivo mechanism of action.
Methods
Asthma was induced in mice and animals were treated intranasally (i.n.) with TGA either simultaneously with treatment or following induction of pathogenesis. Efficacy of TGA was determined through the measurement of airway inflammation, bronchoconstriction, serum IgE, bronchoalveolar lavage (BALF) cytokine and eicosanoid levels.
Results
We find that TGA treated mice have significantly reduced airway inflammation, eosinophilia, and bronchoconstriction. The TGA treatments are effective even when given after disease is established. Moreover, we report a novel inhibitory mechanism as TGA stimulate the production of an anti-inflammatory P-450 eicosanoid metabolites (epoxyeicosatrienoic acids; EET’s) in the lung. Inhibitors of these anti-inflammatory EET reversed TGA inhibition. In human lung MC incubated with TGA there was a significant upregulation of CYP1B gene expression while TGA also reduced IgE production from B cells. Lastly, MC incubated with EET and challenged through FcεRI had a significant blunting of mediator release compared to non-treated cells.
Conclusion
The inhibitory capabilities of TGA reported here suggest that FD may be used a platform for developing treatments for asthma.
doi:10.1016/j.jaci.2012.04.023
PMCID: PMC3955256  PMID: 22664166
fullerene derivative; eicosanoids; asthma; airway inflammation; bronchoconstriction; allergy
4.  Nonvesicular trafficking by a ceramide-1-phosphate transfer protein regulates eicosanoids 
Nature  2013;500(7463):463-467.
Phosphorylated sphingolipids [ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P)] have emerged as key regulators of cell growth, survival, migration, and inflammation1–5. C1P (Fig. 1a) produced by ceramide kinase is an activator of group IVA cytosolic phospholipase A2α (cPLA2α), the rate-limiting releaser of arachidonic acid used for pro-inflammatory eicosanoid production3,6–9, which contributes to disease pathogenesis in asthma/airway hyper-responsiveness, cancer, atherosclerosis, and thrombosis. To modulate eicosanoid action and avoid the damaging effects of chronic inflammation, cells require efficient targeting, trafficking, and presentation of C1P to specific cellular sites. Vesicular trafficking is likely10 but nonvesicular mechanisms for C1P sensing, transfer, and presentation remain unexplored11,12. Moreover, the molecular basis for selective recognition and binding among signaling lipids with phosphate headgroups, namely C1P, phosphatidic acid (PA) or their lyso-derivatives, remains unclear. Herein, an ubiquitously-expressed lipid transfer protein (CPTP) is shown to specifically transfer C1P between membranes. Crystal structures establish C1P binding via a novel surface-localized, phosphate headgroup recognition center connected to an interior hydrophobic pocket that adaptively expands to ensheath differing-length lipid chains using a cleft-like gating mechanism. The two-layer, α-helically-dominated ‘sandwich’ topology identifies CPTP as the prototype for a new GLTP-fold13 subfamily. CPTP resides in the cell cytosol but associates with the trans-Golgi/TGN, nucleus, and plasma membrane. RNAi-induced CPTP depletion elevates C1P steady-state levels and alters Golgi cisternae stack morphology. The resulting C1P decrease in plasma membranes and increase in the Golgi complex stimulates cPLA2α release of arachidonic acid, triggering pro-inflammatory eicosanoid generation.
doi:10.1038/nature12332
PMCID: PMC3951269  PMID: 23863933
5.  Metabolic Gene Remodeling and Mitochondrial Dysfunction in Failing Right Ventricular Hypertrophy due to Pulmonary Arterial Hypertension 
Circulation. Heart failure  2012;6(1):136-144.
Background
Right ventricular dysfunction (RVD) is the most frequent cause of death in patients with pulmonary arterial hypertension. Whereas abnormal energy substrate utilization has been implicated in the development of chronic left heart failure, data describing such metabolic remodeling in RVD remain incomplete. Thus, we sought to characterize metabolic gene expression changes and mitochondrial dysfunction in functional and dysfunctional RV hypertrophy.
Methods and Results
Two different rat models of RV hypertrophy were studied. The model of RVD (SU5416/hypoxia) exhibited a significantly decreased gene expression of PPAR-gamma coactivator-1 alpha (PGC-1α), PPAR-α and ERR-α. The expression of multiple PCG-1α target genes required for fatty acid oxidation (FAO) was similarly decreased. Decreased PGC-1α expression was also associated with a net loss of mitochondrial protein and oxidative capacity. Reduced mitochondrial number was associated with a downregulation of TFAM and other genes required for mitochondrial biogenesis. Electron microscopy demonstrated that in RVD tissue, mitochondria had abnormal shape and size. Lastly, respirometric analysis demonstrated that mitochondria isolated from RVD-tissue had a significantly reduced ADP-stimulated (state 3) rate for complex I. Conversely, functional RV hypertrophy in the pulmonary artery banding (PAB) model showed normal expression of PGC-1α, whereas the expression of FAO genes was either preserved or unregulated. Moreover, PAB-RV tissue exhibited preserved TFAM expression and mitochondrial respiration despite elevated RV pressure-overload.
Conclusions
Right ventricular dysfunction, but not functional RV hypertrophy in rats, demonstrates a gene expression profile compatible with a multilevel impairment of fatty acid metabolism and significant mitochondrial dysfunction, partially independent of chronic pressure-overload.
doi:10.1161/CIRCHEARTFAILURE.111.966127
PMCID: PMC3790960  PMID: 23152488
pulmonary heart disease; metabolism; pressure; fatty acids; mitochondria
6.  Systems-Level Lipid Analysis Methodologies for Qualitative and Quantitative Investigation of Lipid Signaling Events During Wound Healing 
Advances in Wound Care  2013;2(9):538-548.
Objective
Accumulating evidence implicates a prominent role for lipid signaling molecules in the regulation of wound healing. These lipids regulate hemostasis, onset and resolution of inflammation, migration and proliferation cells, angiogenesis, epithelialization, and remodeling of collagen. The objective of this overview is to demonstrate the applicability of systems level lipid analyses to identify and quantify lipid involved in events leading to wound healing.
Approach
Current advances in liquid chromatography coupled to tandem mass spectrometry have provided the means for carrying out quantitative and qualitative analysis of lipids at a systems level. This emerging field is collectively referred to as lipidomics and its potential in wound healing research is largely ignored.
Results
While comprehensive applications of lipidomics in wound healing are limited, studies carried out by the authors as well as others demonstrate distinct changes in the lipidome during the wound healing process.
Innovation
Until recently, investigations into lipids were limited to the study of a few lipids at a time. Lipidomics approaches provide the capability to quantitatively and qualitatively assay almost the full complement of lipid signaling circuits at the same time. This allows obtaining a system level understanding of changes to the entire lipidome during the wound healing process.
Conclusion
The technology provides promising approach to understanding new signaling pathways based on lipids involved in wound healing. The understanding gained from such studies has the potential for the development of novel lipid based treatment strategies to promote wound healing.
doi:10.1089/wound.2012.0402
PMCID: PMC3816989  PMID: 24527363
7.  SRSF1 (SRp30a) regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells 
Molecular cancer research : MCR  2011;9(7):889-900.
Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed thirteen possible RNA cis-elements for interaction with SRSF1 with mutagenesis of these RNA cis-elements identifying a strong intronic splicing enhancer located in intron 6 (C9-I6/ISE). SRSF1 specifically interacted with this sequence, which was required for SRSF1 to act as a splicing enhancer of the inclusion of the four exon cassette. To further determine the biological importance of this mechanism, we employed RNA oligonucleotides to redirect caspase 9 pre-mRNA splicing in favor of caspase 9b expression, which resulted in an increase in the IC50 of non-small cell lung cancer (NSCLC) cells to daunorubicin, cisplatinum, and paclitaxel. In contrast, downregulation of caspase 9b induced a decrease in the the IC50 of these chemotherapeutic drugs. Lastly, these studies demonstrated that caspase 9 RNA splicing was a major mechanism for the synergistic effects of combination therapy with daunorubicin and erlotinib. Overall, we have identified a novel intronic splicing enhancer that regulates caspase 9 RNA splicing and specifically interacts with SRSF1. Furthermore, we demonstrate that the alternative splicing of caspase 9 is an important molecular mechanism with therapeutic relevance to NSCLCs.
doi:10.1158/1541-7786.MCR-11-0061
PMCID: PMC3140550  PMID: 21622622
ceramide; non-small cell lung cancer; RNA trans-factor; tumor repressor; oncogene; ASF/SF2; SRp30a; SRSF1; chemotherapy; erlotinib; daunorubicin; cisplatinum; paclitaxel
8.  Antihypertensive Treatment Differentially Affects Vascular Sphingolipid Biology in Spontaneously Hypertensive Rats 
PLoS ONE  2011;6(12):e29222.
Background
We have previously shown that essential hypertension in humans and spontaneously hypertensive rats (SHR), is associated with increased levels of ceramide and marked alterations in sphingolipid biology. Pharmacological elevation of ceramide in isolated carotid arteries of SHR leads to vasoconstriction via a calcium-independent phospholipase A2, cyclooxygenase-1 and thromboxane synthase-dependent release of thromboxane A2. This phenomenon is almost absent in vessels from normotensive Wistar Kyoto (WKY) rats. Here we investigated whether lowering of blood pressure can reverse elevated ceramide levels and reduce ceramide-mediated contractions in SHR.
Methods and Findings
For this purpose SHR were treated for 4 weeks with the angiotensin II type 1 receptor antagonist losartan or the vasodilator hydralazine. Both drugs decreased blood pressure equally (SBP untreated SHR: 191±7 mmHg, losartan: 125±5 mmHg and hydralazine: 113±14 mmHg). The blood pressure lowering was associated with a 20–25% reduction in vascular ceramide levels and improved endothelial function of isolated carotid arteries in both groups. Interestingly, losartan, but not hydralazine treatment, markedly reduced sphingomyelinase-induced contractions. While both drugs lowered cyclooxygenase-1 expression, only losartan and not hydralazine, reduced the endothelial expression of calcium-independent phospholipase A2. The latter finding may explain the effect of losartan treatment on sphingomyelinase-induced vascular contraction.
Conclusion
In summary, this study corroborates the importance of sphingolipid biology in blood pressure control and specifically shows that blood pressure lowering reduces vascular ceramide levels in SHR and that losartan treatment, but not blood pressure lowering per se, reduces ceramide-mediated arterial contractions.
doi:10.1371/journal.pone.0029222
PMCID: PMC3240660  PMID: 22195025
9.  Ceramide Kinase Regulates the Production of Tumor Necrosis Factor α (TNFα) via Inhibition of TNFα-converting Enzyme* 
The Journal of Biological Chemistry  2011;286(50):42808-42817.
Background: Pro-TNFα is transformed into the active/soluble form through proteolysis by TNFα-converting enzyme (TACE).
Results: Genetic ablation of ceramide kinase induces an increase in TACE activity and secreted TNFα.
Conclusion: Ceramide 1-phosphate (C1P) negatively regulates the activity of TACE.
Significance: The TACE/C1P interaction is a viable drug target for the treatment of heart disease and sepsis.
Tumor necrosis factor α (TNFα) is a well known cytokine involved in systemic and acute inflammation. In this study, we demonstrate that ceramide 1-phosphate (C1P) produced by ceramide kinase (CERK) is a negative regulator of LPS-induced TNFα secretion. Specifically, bone marrow-derived macrophages isolated from CERK knock-out mice (CERK−/−) generated higher levels of TNFα than the wild-type mice (CERK+/+) in response to LPS. An increase in basal TNFα secretion was also observed in CERK−/− murine embryonic fibroblasts, which was rescued by re-expression of wild-type CERK. This effect was due to increased secretion and not transcription. The secretion of TNFα is regulated by TNFα-converting enzyme (TACE also known as ADAM17), and importantly, the activity of TACE was higher in cell extracts from CERK−/− as compared with wild type. In vitro analysis also demonstrated that C1P is a potent inhibitor of this enzyme, in stark contrast to ceramide and sphingosine 1-phosphate. Furthermore, TACE specifically bound C1P with high affinity. Finally, several putative C1P-binding sites were identified via homology throughout the protein sequence of TACE. These results indicate that C1P produced by CERK has a negative effect on the processing/secretion of TNFα via modulation of TACE activity.
doi:10.1074/jbc.M111.310169
PMCID: PMC3234830  PMID: 22009748
Lipids; Lipid-binding Protein; Lipid Synthesis; Sphingolipid; Tumor Necrosis Factor (TNF)
10.  Hypertension Is Associated with Marked Alterations in Sphingolipid Biology: A Potential Role for Ceramide 
PLoS ONE  2011;6(7):e21817.
Background
Hypertension is, amongst others, characterized by endothelial dysfunction and vascular remodeling. As sphingolipids have been implicated in both the regulation of vascular contractility and growth, we investigated whether sphingolipid biology is altered in hypertension and whether this is reflected in altered vascular function.
Methods and Findings
In isolated carotid arteries from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats, shifting the ceramide/S1P ratio towards ceramide dominance by administration of a sphingosine kinase inhibitor (dimethylsphingosine) or exogenous application of sphingomyelinase, induced marked endothelium-dependent contractions in SHR vessels (DMS: 1.4±0.4 and SMase: 2.1±0.1 mN/mm; n = 10), that were virtually absent in WKY vessels (DMS: 0.0±0.0 and SMase: 0.6±0.1 mN/mm; n = 9, p<0.05). Imaging mass spectrometry and immunohistochemistry indicated that these contractions were most likely mediated by ceramide and dependent on iPLA2, cyclooxygenase-1 and thromboxane synthase. Expression levels of these enzymes were higher in SHR vessels. In concurrence, infusion of dimethylsphingosine caused a marked rise in blood pressure in anesthetized SHR (42±4%; n = 7), but not in WKY (−12±10%; n = 6). Lipidomics analysis by mass spectrometry, revealed elevated levels of ceramide in arterial tissue of SHR compared to WKY (691±42 vs. 419±27 pmol, n = 3–5 respectively, p<0.05). These pronounced alterations in SHR sphingolipid biology are also reflected in increased plasma ceramide levels (513±19 pmol WKY vs. 645±25 pmol SHR, n = 6–12, p<0.05). Interestingly, we observed similar increases in ceramide levels (correlating with hypertension grade) in plasma from humans with essential hypertension (185±8 pmol vs. 252±23 pmol; n = 18 normotensive vs. n = 19 hypertensive patients, p<0.05).
Conclusions
Hypertension is associated with marked alterations in vascular sphingolipid biology such as elevated ceramide levels and signaling, that contribute to increased vascular tone.
doi:10.1371/journal.pone.0021817
PMCID: PMC3139577  PMID: 21818267
11.  Exogenous and endogenous ceramides elicit volume-sensitive chloride current in ventricular myocytes 
Cardiovascular Research  2009;86(1):55-62.
Aims
Because ceramide accumulates in several forms of cardiovascular disease and ceramide-induced apoptosis may involve the volume-sensitive Cl− current, ICl,swell, we assessed whether ceramide activates ICl,swell.
Methods and results
ICl,swell was measured in rabbit ventricular myocytes by whole-cell patch clamp after isolating anion currents. Exogenous C2-ceramide (C2-Cer), a membrane-permeant short-chain ceramide, elicited an outwardly rectifying Cl− current in both physiological and symmetrical Cl− solutions that was fully inhibited by DCPIB, a specific ICl,swell blocker. In contrast, the metabolically inactive C2-Cer analogue C2-dihydroceramide (C2-H2Cer) failed to activate Cl− current. Bacterial sphingomyelinase (SMase), which generates endogenous long-chain ceramides as was confirmed by tandem mass spectrometry, also elicited an outwardly rectifying Cl− current that was inhibited by DCPIB and tamoxifen, another ICl,swell blocker. Bacterial SMase-induced current was partially reversed by osmotic shrinkage and fully suppressed by ebselen, a scavenger of reactive oxygen species. Outward rectification with physiological and symmetrical Cl− gradients, block by DCPIB and tamoxifen, and volume sensitivity are characteristics that identify ICl,swell. Insensitivity to C2-H2Cer and block by ebselen suggest involvement of ceramide signalling rather than direct lipid-channel interaction.
Conclusion
Exogenous and endogenous ceramide elicited ICl,swell in ventricular myocytes. This may contribute to persistent activation of ICl,swell and aspects of altered myocyte function in cardiovascular diseases associated with by ceramide accumulation.
doi:10.1093/cvr/cvp399
PMCID: PMC2836262  PMID: 20008476
Cl channel; Ceramide; Sphingomyelinase; ICl,swell; VRAC

Results 1-11 (11)