PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (86)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
1.  Gene Therapies for Cancer: Strategies, Challenges and Successes 
Journal of cellular physiology  2015;230(2):259-271.
Gene therapy, which involves replacement of a defective gene with a functional, healthy copy of that gene, is a potentially beneficial cancer treatment approach particularly over chemotherapy, which often lacks selectivity and can cause non-specific toxicity. Despite significant progress pre-clinically with respect to both enhanced targeting and expression in a tumor-selective manner several hurdles still prevent success in the clinic, including non-specific expression, low-efficiency delivery and biosafety. Various innovative genetic approaches are under development to reconstruct vectors/transgenes to make them safer and more effective. Utilizing cutting-edge delivery technologies, gene expression can now be targeted in a tissue- and organ-specific manner. With these advances, gene therapy is poised to become amenable for routine cancer therapy with potential to elevate this methodology as a first line therapy for neoplastic diseases. This review discusses recent advances in gene therapy and their impact on a pre-clinical and clinical level.
doi:10.1002/jcp.24791
PMCID: PMC4363073  PMID: 25196387
2.  The role of AEG-1 in the development of liver cancer 
Hepatic oncology  2015;2(3):303-312.
AEG-1 is an oncogene that is overexpressed in all cancers, including hepatocellular carcinoma. AEG-1 plays a seminal role in promoting cancer development and progression by augmenting proliferation, invasion, metastasis, angiogenesis and chemoresistance, all hallmarks of aggressive cancer. AEG-1 mediates its oncogenic function predominantly by interacting with various protein complexes. AEG-1 acts as a scaffold protein, activating multiple protumorigenic signal transduction pathways, such as MEK/ERK, PI3K/Akt, NF-κB and Wnt/β-catenin while regulating gene expression at transcriptional, post-transcriptional and translational levels. Our recent studies document that AEG-1 is fundamentally required for activation of inflammation. A comprehensive and convincing body of data currently points to AEG-1 as an essential component critical to the onset and progression of cancer. The present review describes the current knowledge gleaned from patient and experimental studies as well as transgenic and knockout mouse models, on the impact of AEG-1 on hepatocarcinogenesis.
doi:10.2217/hep.15.10
PMCID: PMC4717832  PMID: 26798451
AEG-1; angiogenesis; chemoresistance; hepatocellular carcinoma; inflammation; metastasis
3.  Targeting tumor invasion: the roles of MDA-9/Syntenin 
Introduction
Melanoma differentiation-associated gene – 9 (MDA-9)/Syntenin has become an increasingly popular focus for investigation in numerous cancertypes. Originally implicated in melanoma metastasis, it has diverse cellular roles and is consistently identified as a regulator of tumor invasion and angiogenesis. As a potential target for inhibiting some of the most lethal aspects of cancer progression, further insight into the function of MDA-9/Syntenin is mandatory.
Areas covered
Recent literature and seminal articles were reviewed to summarize the latest collective understanding of MDA-9/Syntenin’s role in normal and cancerous settings. Insights into its participation in developmental processes are included, as is the functional significance of the N- and C-terminals and PDZ domains of MDA-9/Syntenin. Current reports highlight the clinical significance of MDA-9/Syntenin expression level in a variety of cancers, often correlating directly with reduced patient survival. Also presented are assessments of roles of MDA-9/Syntenin in cancer progression as well as its functions as an intracellular adapter molecule.
Expert opinion
Multiple studies demonstrate the importance of MDA-9/ Syntenin in tumor invasion and progression. Through the use of novel drug design approaches, this protein may provide a worthwhile therapeutic target. As many conventional therapies do not address, or even enhance, tumor invasion, an anti-invasive approach would be a worthwhile addition in cancer therapy.
doi:10.1517/14728222.2014.959495
PMCID: PMC4632993  PMID: 25219541
angiogenesis; breast cancer; c-Src; EGFR; exosomes; glioblastoma; glioma; integrin; invasion; melanoma; melanoma differentiation-associated gene – 9; metastasis; PDZ; small cell lung carcinoma; syndecan binding protein; syntenin; urothelial cell carcinoma; uveal melanoma
4.  Astrocyte elevated gene-1 (AEG-1) interacts with Akt isoform 2 to control glioma growth, survival and pathogenesis 
Cancer research  2014;74(24):7321-7332.
The oncogene AEG-1 (MTDH) is highly expressed in glioblastoma multiforme (GBM) and many other types of cancer, where it activates multiple signaling pathways that drive proliferation, invasion, angiogenesis, chemoresistance, radioresistance and metastasis. AEG-1 activates the Akt signaling pathway and Akt and c-Myc are positive regulators of AEG-1 transcription, generating a positive feedback loop between AEG-1 and Akt in regulating tumorigenesis. Here we describe in GBM cells a direct interaction between an internal domain of AEG-1 and the PH domain of Akt2, a major driver in GBM. Expression and interaction of AEG-1 and Akt2 are elevated in GBM and contribute to tumor cell survival, proliferation and invasion. Clinically, in silico gene expression and immunohistochemical analyses of patient specimens showed that AEG-1 and Akt2 expression correlated with GBM progression and reduced patient survival. AEG-1-Akt2 interaction prolonged stabilization of Akt2 phosphorylation at S474, regulating downstream signaling cascades which enable cell proliferation and survival. Disrupting AEG-1-Akt2 interaction by competitive binding of the Akt2-PH domain led to reduced cell viability and invasion. When combined with AEG-1 silencing, conditional expression of Akt2-PH markedly increased survival in an orthotopic mouse model of human GBM. Our study uncovers a novel molecular mechanism by which AEG-1 augments glioma progression and offers a rationale to block AEG-1-Akt2 signaling function as a novel GBM treatment.
doi:10.1158/0008-5472.CAN-13-2978
PMCID: PMC4268375  PMID: 25304263
Glioblastoma; AEG-1; Akt2
5.  Analysis of global changes in gene expression induced by human polynucleotide phosphorylase (hPNPaseold-35) 
Journal of cellular physiology  2014;229(12):1952-1962.
As a strategy to identify gene expression changes affected by human polynucleotide phosphorylase (hPNPaseold-35), we performed gene expression analysis of HeLa cells in which hPNPaseold-35 was overexpressed. The observed changes were then compared to those of HO-1 melanoma cells in which hPNPaseold-35 was stably knocked down. Through this analysis, 90 transcripts, which positively or negatively correlated with hPNPaseold-35 expression, were identified. The majority of these genes were associated with cell communication, cell cycle and chromosomal organization gene ontology categories. For a number of these genes, the positive or negative correlations with hPNPaseold-35 expression were consistent with transcriptional data extracted from the TCGA (The Cancer Genome Atlas) expression datasets for colon adenocarcinoma (COAD), skin cutaneous melanoma (SKCM), ovarian serous cyst adenocarcinoma (OV), and prostate adenocarcinoma (PRAD). Further analysis comparing the gene expression changes between Ad.hPNPaseold-35 infected HO-1 melanoma cells and HeLa cells overexpressing hPNPaseold-35 under the control of a doxycycline-inducible promoter, revealed global changes in genes involved in cell cycle and mitosis. Overall, this study provides further evidence that hPNPaseold-35 is associated with global changes in cell cycle-associated genes and identifies potential gene targets for future investigation.
doi:10.1002/jcp.24645
PMCID: PMC4149605  PMID: 24729470
6.  MDA-7/IL-24: Multifunctional Cancer Killing Cytokine 
First identified almost two decades ago as a novel gene differentially expressed in human melanoma cells induced to terminally differentiate, MDA-7/IL-24 has since shown great potential as an anti-cancer gene. MDA-7/IL24, a secreted protein of the IL-10 family, functions as a cytokine at normal physiological levels and is expressed in tissues of the immune system. At supra-physiological levels, MDA-7/IL-24 plays a prominent role in inhibiting tumor growth, invasion, metastasis and angiogenesis and was recently shown to target tumor stem/initiating cells for death. Much of the attention focused on MDA-7/IL-24 originated from the fact that it can selectively induce cell death in cancer cells without affecting normal cells. Thus, this gene originally shown to be associated with melanoma cell differentiation has now proven to be a multi-functional protein affecting a broad array of cancers. Moreover, MDA-7/IL-24 has proven efficacious in a Phase I/II clinical trial in humans with multiple advanced cancers. As research in the field progresses, we will unravel more of the functions of MDA-7/IL-24 and define novel ways to utilize MDA-7/IL-24 in the treatment of cancer.
doi:10.1007/978-1-4471-6458-6_6
PMCID: PMC4633013  PMID: 25001534
MDA-7; IL-24; Cytokine; Cancer; Apoptosis; Autophagy; Bystander antitumor activity; Cancer terminator virus
7.  Genetic deletion of AEG-1 prevents hepatocarcinogenesis 
Cancer research  2014;74(21):6184-6193.
Activation of the oncogene AEG-1 (MTDH, LYRIC) has been implicated recently in the development of hepatocellular carcinoma (HCC). In mice, HCC can be initiated by exposure to the carcinogen DEN, which has been shown to rely upon activation of NF-κB in liver macrophages. Since AEG-1 is an essential component of NF-κB activation, we interrogated the susceptibility of mice lacking the AEG-1 gene to DEN-induced hepatocarcinogenesis. AEG-1-deficient mice displayed resistance to DEN-induced HCC and lung metastasis. No difference was observed in the response to growth factor signaling or activation of Akt, ERK and β-catenin, compared to wild-type control animals. However, AEG-1-deficient hepatocytes and macrophages exhibited a relative defect in NF-κB activation. Mechanistic investigations showed that IL-6 production and STAT-3 activation, two key mediators of HCC development, were also deficient along with other biological and epigenetics findings in the tumor microenvironment confirming that AEG-1 supports an NF-κB-mediated inflammatory state that drives HCC development. Overall, our findings offer in vivo proofs that AEG-1 is essential for NF-κB activation and hepatocarcinogenesis, and they reveal new roles for AEG-1 in shaping the tumor microenvironment for HCC development.
doi:10.1158/0008-5472.CAN-14-1357
PMCID: PMC4216744  PMID: 25193383
Astrocyte elevated gene-1 (AEG-1); hepatocellular carcinoma (HCC); tumor microenvironment; macrophages; NF-κB
8.  Pancreatic cancer-specific cell death induced in vivo by cytoplasmic-delivered polyinosine-polycytidylic acid 
Cancer research  2014;74(21):6224-6235.
Polyinosine-polycytidylic acid (pIC) is a synthetic dsRNA that acts as an immune agonist of TLR3 and RLR to activate dendritic and NK cells that can kill tumor cells. pIC can also trigger apoptosis in pancreatic ductal adenocarcinoma cells but its mechanism of action is obscure. In this study, we investigated the potential therapeutic activity of a formulation of pIC with polyethylenimine ([pIC]PEI) in PDAC and investigated its mechanism of action. [pIC]PEI stimulated apoptosis in PDAC cells without affecting normal pancreatic epithelial cells. Mechanistically, [pIC]PEI repressed XIAP and survivin expression and activated an immune response by inducing MDA-5, RIG-I and NOXA. Phosphorylation of AKT was inhibited by [pIC]PEI in PDAC and this event was critical for stimulating apoptosis through XIAP and survivin degradation. In vivo administration of [pIC]PEI inhibited tumor growth via AKT-mediated XIAP degradation in both subcutaneous and quasi-orthotopic-models of PDAC. Taken together, these results offer a preclinical proof-of-concept for the evaluation of [pIC]PEI as an immunochemotherapy to treat pancreatic cancer.
doi:10.1158/0008-5472.CAN-14-0819
PMCID: PMC4216760  PMID: 25205107
[pI:C]; [pIC]PEI; jetPEI; Pancreatic cancer; PDAC; AKT; XIAP
9.  Small molecule inhibitors of Late SV40 Factor (LSF) abrogate hepatocellular carcinoma (HCC): Evaluation using an endogenous HCC model 
Oncotarget  2015;6(28):26266-26277.
Hepatocellular carcinoma (HCC) is a lethal malignancy with high mortality and poor prognosis. Oncogenic transcription factor Late SV40 Factor (LSF) plays an important role in promoting HCC. A small molecule inhibitor of LSF, Factor Quinolinone Inhibitor 1 (FQI1), significantly inhibited human HCC xenografts in nude mice without harming normal cells. Here we evaluated the efficacy of FQI1 and another inhibitor, FQI2, in inhibiting endogenous hepatocarcinogenesis. HCC was induced in a transgenic mouse with hepatocyte-specific overexpression of c-myc (Alb/c-myc) by injecting N-nitrosodiethylamine (DEN) followed by FQI1 or FQI2 treatment after tumor development. LSF inhibitors markedly decreased tumor burden in Alb/c-myc mice with a corresponding decrease in proliferation and angiogenesis. Interestingly, in vitro treatment of human HCC cells with LSF inhibitors resulted in mitotic arrest with an accompanying increase in CyclinB1. Inhibition of CyclinB1 induction by Cycloheximide or CDK1 activity by Roscovitine significantly prevented FQI-induced mitotic arrest. A significant induction of apoptosis was also observed upon treatment with FQI. These effects of LSF inhibition, mitotic arrest and induction of apoptosis by FQI1s provide multiple avenues by which these inhibitors eliminate HCC cells. LSF inhibitors might be highly potent and effective therapeutics for HCC either alone or in combination with currently existing therapies.
PMCID: PMC4694900  PMID: 26313006
LSF; HCC; FQI; mitotic arrest; apoptosis
10.  AEG-1 regulates retinoid X receptor and inhibits retinoid signaling 
Cancer research  2014;74(16):4364-4377.
Retinoid X Receptor (RXR) regulates key cellular responses such as cell growth and development, and this regulation is frequently perturbed in various malignancies, including Hepatocellular Carcinoma (HCC). However, the molecule(s) that physically govern this deregulation are mostly unknown. Here, we identified RXR as an interacting partner of Astrocyte Elevated Gene-1 (AEG-1)/Metadherin (MTDH), an oncogene upregulated in all cancers. Upon interaction, AEG-1 profoundly inhibited RXR/Retinoic Acid Receptor (RAR)-mediated transcriptional activation. Consequently, AEG-1 markedly protected HCC and acute myeloid leukemia (AML) cells from retinoid- and rexinoid-induced cell death. In non-tumorigenic cells and primary hepatocytes, AEG-1/RXR co-localizes in the nucleus where AEG-1 interferes with recruitment of transcriptional co-activators to RXR preventing transcription of target genes. In tumor cells and AEG-1 transgenic hepatocytes, overexpressed AEG-1 entraps RXR in cytoplasm, precluding its nuclear translocation. Additionally, ERK, activated by AEG-1, phosphorylates RXR which leads to its functional inactivation and attenuation of ligand-dependent transactivation. In nude mice models, combination of all-trans retinoic acid (ATRA) and AEG-1 knockdown synergistically inhibited growth of human HCC xenografts. The present study establishes AEG-1 as a novel homeostatic regulator of RXR and RXR/RAR that might contribute to hepatocarcinogenesis. Targeting AEG-1 could sensitize HCC and AML patients to retinoid- and rexinoid-based therapeutics.
doi:10.1158/0008-5472.CAN-14-0421
PMCID: PMC4135401  PMID: 25125681
Hepatocellular Carcinoma; Protein-protein interaction; Transcriptional regulation; Retinoic acid; Cancer therapeutics
11.  Characterization of the canine mda-7 gene, transcripts and expression patterns 
Gene  2014;547(1):23-33.
Human melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) displays potent growth suppressing and cell killing activity against a wide variety of human and rodent cancer cells. In this study, we identified a canine ortholog of the human mda-7/IL-24 gene located within a cluster of IL-10 family members on chromosome 7. The full-length mRNA sequence of canine mda-7 was determined, which encodes a 186-amino acid protein that has 66% similarity to human MDA-7/IL-24. Canine MDA-7 is constitutively expressed in cultured normal canine epidermal keratinocytes (NCEKs), and its expression levels are increased after lipopolysaccharide stimulation. In cultured NCEKs, the canine mda-7 pre-mRNA is differentially spliced, via exon skipping and alternate 5′-splice donor sites, to yield five splice variants (canine mda-7sv1, canine mda-7sv2, canine mda-7sv3, canine mda-7sv4 and canine mda-7sv5) that encode four protein isoforms of the canine MDA-7 protein. These protein isoforms have a conserved N-terminus (signal peptide sequence) and are dissimilar in amino acid sequences at their C-terminus. Canine MDA-7 is not expressed in primary canine tumor samples, and most tumor derived cancer cell lines tested, like its human counterpart. Unlike human MDA-7/IL-24, canine mda-7 mRNA is not expressed in unstimulated or lipopolysaccharide (LPS), concanavalin A (ConA) or phytohemagglutinin (PHA) stimulated canine peripheral blood mononuclear cells (PBMCs). Furthermore, in-silico analysis revealed that canonical canine MDA-7 has a potential 28 amino acid signal peptide sequence that can target it for active secretion. This data suggests that canine mda-7 is indeed an ortholog of human mda-7/IL-24, its protein product has high amino acid similarity to human MDA-7/IL-24 protein and it may possess similar biological properties to human MDA-7/IL-24, but its expression pattern is more restricted than its human ortholog.
doi:10.1016/j.gene.2014.05.054
PMCID: PMC4131717  PMID: 24865935
12.  Mcl-1 is an important therapeutic target for oral squamous cell carcinomas 
Oncotarget  2015;6(18):16623-16637.
Oral and oropharyngeal cancers are the sixth most common cancers worldwide. Despite intensive investigation, oral squamous cell carcinomas (OSCC) represent a clinical challenge resulting in significant morbidity and mortality. Resistance to cell death is common in OSCC and is often mediated by the Bcl-2 family proteins. Among all anti-apoptotic Bcl-2 family members, Mcl-1 functions as a major survival factor, particularly in solid cancers. Despite the confirmed importance of Mcl-1 in several neoplasms, the role of Mcl-1 in OSCC survival has yet to be explored. In this study, we found that knocking down Mcl-1 sensitized OSCC cells to ABT-737, which binds to Bcl-2/Bcl-xL but not Mcl-1. We report for the first time that a BH3 mimetic, Sabutoclax, which functions as an inhibitor of all anti-apoptotic Bcl-2 proteins, induced cancer-specific cell death in an Mcl-1-dependent manner through both apoptosis and toxic mitophagy. In vivo studies demonstrated that Sabutoclax alone decreased tumor growth in a carcinogen-induced tongue OSCC mouse model. In a combination regimen, Sabutoclax and COX-2 inhibitor, Celecoxib, synergistically inhibited the growth of OSCC in vitro and also significantly reduced OSCC tumor growth in vivo. Overall, these results identify Mcl-1 as a therapeutic prospective target in OSCC.
PMCID: PMC4599294  PMID: 26009874
Mcl-1; OSCC; mitophagy; sabutoclax; 4-NQO
13.  Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads 
BMC Genomics  2015;16(Suppl 7):S14.
Background
RNA sequencing (RNA-seq) is a powerful tool for genome-wide expression profiling of biological samples with the advantage of high-throughput and high resolution. There are many existing algorithms nowadays for quantifying expression levels and detecting differential gene expression, but none of them takes the misaligned reads that are mapped to non-exonic regions into account. We developed a novel algorithm, XBSeq, where a statistical model was established based on the assumption that observed signals are the convolution of true expression signals and sequencing noises. The mapped reads in non-exonic regions are considered as sequencing noises, which follows a Poisson distribution. Given measureable observed and noise signals from RNA-seq data, true expression signals, assuming governed by the negative binomial distribution, can be delineated and thus the accurate detection of differential expressed genes.
Results
We implemented our novel XBSeq algorithm and evaluated it by using a set of simulated expression datasets under different conditions, using a combination of negative binomial and Poisson distributions with parameters derived from real RNA-seq data. We compared the performance of our method with other commonly used differential expression analysis algorithms. We also evaluated the changes in true and false positive rates with variations in biological replicates, differential fold changes, and expression levels in non-exonic regions. We also tested the algorithm on a set of real RNA-seq data where the common and different detection results from different algorithms were reported.
Conclusions
In this paper, we proposed a novel XBSeq, a differential expression analysis algorithm for RNA-seq data that takes non-exonic mapped reads into consideration. When background noise is at baseline level, the performance of XBSeq and DESeq are mostly equivalent. However, our method surpasses DESeq and other algorithms with the increase of non-exonic mapped reads. Only in very low read count condition XBSeq had a slightly higher false discovery rate, which may be improved by adjusting the background noise effect in this situation. Taken together, by considering non-exonic mapped reads, XBSeq can provide accurate expression measurement and thus detect differential expressed genes even in noisy conditions.
doi:10.1186/1471-2164-16-S7-S14
PMCID: PMC4474535  PMID: 26099631
RNA-Seq; Differential expression analysis; XBSeq; DESeq; Non-exonic mapped reads; Negative binomial distribution; Poisson distribution
14.  Therapy of prostate cancer using a novel cancer terminator virus and a small molecule BH-3 mimetic 
Oncotarget  2015;6(13):10712-10727.
Despite recent advances, treatment options for advanced prostate cancer (CaP) remain limited. We are pioneering approaches to treat advanced CaP that employ conditionally replication-competent oncolytic adenoviruses that simultaneously produce a systemically active cancer-specific therapeutic cytokine, mda-7/IL-24, Cancer Terminator Viruses (CTV). A truncated version of the CCN1/CYR61 gene promoter, tCCN1-Prom, was more active than progression elevated gene-3 promoter (PEG-Prom) in regulating transformation-selective transgene expression in CaP and oncogene-transformed rat embryo cells. Accordingly, we developed a new CTV, Ad.tCCN1-CTV-m7, which displayed dose-dependent killing of CaP without harming normal prostate epithelial cells in vitro with significant anti-cancer activity in vivo in both nude mouse CaP xenograft and transgenic Hi-Myc mice (using ultrasound-targeted microbubble (MB)-destruction, UTMD, with decorated MBs). Resistance to mda-7/IL-24-induced cell deathcorrelated with overexpression of Bcl-2 family proteins. Inhibiting Mcl-1 using an enhanced BH3 mimetic, BI-97D6, sensitized CaP cell lines to mda-7/IL-24-induced apoptosis. Combining BI-97D6 with Ads expressing mda-7/IL-24promoted ER stress, decreased anti-apoptotic Mcl-1 expression and enhanced mda-7/IL-24expression through mRNA stabilization selectively in CaP cells. In Hi-myc mice, the combination induced enhanced apoptosis and tumor growth suppression. These studies highlight therapeutic efficacy of combining a BH3 mimetic with a novel CTV, supporting potential clinical applications for treating advanced CaP.
PMCID: PMC4484414  PMID: 25926554
BH3 mimetic; cancer terminator virus (CTV; prostate cancer (CaP); truncated CCN1 (tCCN1)-Prom; PEG-Prom
15.  Autophagy: Cancer’s Friend or Foe? 
Advances in cancer research  2013;118:61-95.
The functional relevance of autophagy in tumor formation and progression remains controversial. Autophagy can promote tumor suppression during cancer initiation and protect tumors during progression. Autophagy-associated cell death may act as a tumor suppressor, with several autophagy-related genes deleted in cancers. Loss of autophagy induces genomic instability and necrosis with inflammation in mouse tumor models. Conversely, autophagy enhances survival of tumor cells subjected to metabolic stress and may promote metastasis by enhancing tumor cell survival under environmental stress. Unraveling the complex molecular regulation and multiple diverse roles of autophagy is pivotal in guiding development of rational and novel cancer therapies.
doi:10.1016/B978-0-12-407173-5.00003-0
PMCID: PMC4349374  PMID: 23768510
16.  Genetically Engineered Mice as Experimental Tools to Dissect the Critical Events in Breast Cancer 
Advances in cancer research  2014;121:331-382.
Elucidating the mechanism of pathogenesis of breast cancer has greatly benefited from breakthrough advances in both genetically engineered mouse (GEM) models and xenograft transplantation technologies. The vast array of breast cancer mouse models currently available is testimony to the complexity of mammary tumorigenesis and attempts by investigators to accurately portray the heterogeneity and intricacies of this disease. Distinct molecular changes that drive various aspects of tumorigenesis, such as alterations in tumor cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and drug resistance have been evaluated using the currently available GEM breast cancer models. GEM breast cancer models are also being exploited to evaluate and validate the efficacy of novel therapeutics, vaccines, and imaging modalities for potential use in the clinic. This review provides a synopsis of the various GEM models that are expanding our knowledge of the nuances of breast cancer development and progression and can be instrumental in the development of novel prevention and therapeutic approaches for this disease.
doi:10.1016/B978-0-12-800249-0.00008-1
PMCID: PMC4349377  PMID: 24889535
17.  Cancer Terminator Viruses and Approaches for Enhancing Therapeutic Outcomes 
No single or combinatorial therapeutic approach has proven effective in decreasing morbidity or engendering a cure of metastatic cancer. In principle, conditionally replication-competent adenoviruses that induce tumor oncolysis through cancer-specific replication hold promise for cancer therapy. However, a single-agent approach may not be adequate to completely eradicate cancer in a patient because most cancers arise from abnormalities in multiple genetic and signal transduction pathways and targeting disseminated metastases is difficult to achieve. Based on these considerations, a novel class of cancer destroying adenoviruses have been produced, cancer terminator viruses (CTVs), in which cancer-specific replication is controlled by the progression-elevated gene-3 promoter and replicating viruses produce a second transgene encoding an apoptosis-inducing and immunomodulatory cytokine, either melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) or interferon-γ. This review focuses on these viruses and ways to improve their delivery systemically and enhance their therapeutic efficacy.
doi:10.1016/B978-0-12-398342-8.00001-X
PMCID: PMC4348031  PMID: 23021240
18.  Developing an Effective Gene Therapy for Prostate Cancer: New Technologies with Potential to Translate from the Laboratory into the Clinic 
Discovery medicine  2011;11(56):46-56.
Prostate cancer is the second leading cause of cancer-related deaths in men in the U.S. At present, no single or combination therapy has shown efficacy in decreasing disease progression in patients with metastatic disease. A potentially viable approach for treating late-stage prostate cancer is gene therapy. Adenoviruses (Ad) are the most commonly used mode of gene delivery, but progress using this vector has been hampered by concerns over the safety and practicality of viruses including conditionally replicating Ads (CRAds), particularly for intravenous delivery, and the inefficiency of non-viral transfection techniques. Major challenges for effective gene therapy using Ads are the limited infectivity of regular Ad serotype 5 (Ad5) and the inability to specifically deliver the therapeutic directly into diseased tissue without trapping in the liver or elimination by the immune system. The shortcoming in using Ad5 is mostly attributed to a reduction in Coxsackie-adenovirus receptors (CAR) on the surface of cancer cells, which can be mitigated by generating tropism-modified Ads permitting CAR-independent infection of tumor cells. The limitations of systemic gene delivery can now be overcome by using a novel targeted-delivery approach such as ultrasound (US) contrast agents (microbubbles) to deliver effective therapeutic reagents, Ads, or recombinant proteins, combined with ultrasound-targeted microbubble destruction (UTMD), to develop a site-specific therapy in immune competent transgenic mouse models. These unique strategies for enhancing the efficacy of gene therapy provide a direct path to translation from the laboratory into the clinic for developing an effective gene therapy of prostate cancer.
PMCID: PMC4348040  PMID: 21276410
19.  Molecular-Genetic Imaging of Cancer 
Advances in cancer research  2014;124:131-169.
Molecular-genetic imaging of cancer using nonviral delivery systems has great potential for clinical application as a safe, efficient, noninvasive tool for visualization of various cellular processes including detection of cancer, and its attendant metastases. In recent years, significant effort has been expended in overcoming technical hurdles to enable clinical adoption of molecular-genetic imaging. This chapter will provide an introduction to the components of molecular-genetic imaging and recent advances on each component leading to safe, efficient clinical applications for detecting cancer. Combination with therapy, namely, generating molecular-genetic theranostic constructs, will provide further impetus for clinical translation of this promising technology.
doi:10.1016/B978-0-12-411638-2.00004-5
PMCID: PMC4339000  PMID: 25287688
20.  Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24 
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival.
doi:10.1002/ijc.28289
PMCID: PMC4334374  PMID: 23720015
MDA-7/IL-24; apoptosis; Wnt signaling; cancer-initiating/stem cells; breast cancer
21.  Enhanced Prostate Cancer Gene Transfer and Therapy Using a Novel Serotype Chimera Cancer Terminator Virus (Ad.5/3-CTV) 
Journal of cellular physiology  2014;229(1):34-43.
Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating PC. We previously constructed a CRCA, cancer terminator virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting.
doi:10.1002/jcp.24408
PMCID: PMC4332535  PMID: 23868767
22.  Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction 
Cancer research  2013;74(2):563-574.
Subtraction-hybridization combined with induction of cancer cell terminal differentiation in human melanoma cells identified melanoma differentiation associated gene-7 (mda-7/IL-24) and SARI (Suppressor of AP-1, induced by IFN) that display potent antitumor activity. These genes are not constitutively expressed in cancer cells and forced expression of mda-7/IL-24 (Ad.mda-7) or SARI(Ad.SARI) promotes cancer-specific cell death. Ectopic expression of mda-7/IL-24 induces SARI mRNA and protein in a panel of different cancer cells leading to cell death, without harming corresponding normal cells. Simultaneous inhibition of K-ras downstream extracellular regulated kinase 1/2 (ERK1/2) signaling in pancreatic cancer cells reverses the translational block of MDA-7/IL-24 and induces SARI expression and cell death. Using SARI-antisense-based approaches we demonstrate that SARI expression is necessary for mda-7/IL-24 antitumor effects. Secreted MDA-7/IL-24 protein induces antitumor ‘bystander’ effects by promoting its own expression. Recombinant MDA-7/IL-24 (His-MDA-7) induces SARI expression, supporting the involvement of SARI in the MDA-7/IL-24-driven autocrine loop culminating in antitumor effects. Moreover, His-MDA-7 after binding to its cognate receptors (IL-20R1/IL-20R2 or IL-22R/IL-20R2) induces intracellular signaling by phosphorylation of p38 MAPK leading to transcription of a family of growth arrest and DNA damage inducible (GADD) genes, culminating in apoptosis. Inhibition of p38 MAPK fails to induce SARI following Ad.mda-7 infection. These findings reveal the significance of the mda-7/IL-24-SARI axis in cancer-specific killing, and provide a potential strategy for treating both local and metastatic disease.
doi:10.1158/0008-5472.CAN-13-1062
PMCID: PMC3915776  PMID: 24282278
SARI; MDA-7/IL-24; apoptosis; IL-20/IL-22 receptors
23.  MDA-9/syntenin is a key regulator of glioma pathogenesis 
Neuro-Oncology  2013;16(1):50-61.
Background
The extraordinary invasiveness of human glioblastoma multiforme (GBM) contributes to treatment failure and the grim prognosis of patients diagnosed with this tumor. Consequently, it is imperative to define further the cellular mechanisms that control GBM invasion and identify promising novel therapeutic targets. Melanoma differentiation associated gene–9 (MDA-9/syntenin) is a highly conserved PDZ domain–containing scaffolding protein that promotes invasion and metastasis in vitro and in vivo in human melanoma models. To determine whether MDA-9/syntenin is a relevant target in GBM, we investigated its expression in tumor samples and involvement in GBM invasion and angiogenesis.
Materials
We assessed MDA-9/syntenin levels in available databases, patient tumor samples, and human-derived cell lines. Through gain-of-function and loss-of-function studies, we analyzed changes in invasion, angiogenesis, and signaling in vitro. We used orthotopic xenografts with GBM6 cells to demonstrate the role of MDA-9/syntenin in GBM pathogenesis in vivo.
Results
MDA-9/syntenin expression in high-grade astrocytomas is significantly higher than normal tissue counterparts. Forced overexpression of MDA-9/syntenin enhanced Matrigel invasion, while knockdown inhibited invasion, migration, and anchorage-independent growth in soft agar. Moreover, overexpression of MDA-9/syntenin increased activation of c-Src, p38 mitogen-activated protein kinase, and nuclear factor kappa-B, leading to elevated expression of matrix metalloproteinase 2 and secretion of interleukin-8 with corresponding changes observed upon knockdown. GBM6 cells that stably express small hairpin RNA for MDA-9/syntenin formed smaller tumors and had a less invasive phenotype in vivo.
Conclusions
Our findings indicate that MDA-9/syntenin is a novel and important mediator of invasion in GBM and a key regulator of pathogenesis, and we identify it as a potential target for anti-invasive treatment in human astrocytoma.
doi:10.1093/neuonc/not157
PMCID: PMC3870820  PMID: 24305713
MDA-9/syntenin; GBM; glioma; invasion; intracranial injection
24.  Role of the staphylococcal nuclease and tudor domain containing 1 in oncogenesis (Review) 
International Journal of Oncology  2014;46(2):465-473.
The staphylococcal nuclease and tudor domain containing 1 (SND1) is a multifunctional protein overexpressed in breast, prostate, colorectal and hepatocellular carcinomas and malignant glioma. Molecular studies have revealed the multifaceted activities of SND1 involved in regulating gene expression at transcriptional as well as post-transcriptional levels. Early studies identified SND1 as a transcriptional co-activator. SND1 is also a component of RNA-induced silencing complex (RISC) thus mediating RNAi function, a regulator of mRNA splicing, editing and stability, and plays a role in maintenance of cell viability. Such diverse actions allow the SND1 to modulate a complex array of molecular networks, thereby promoting carcinogenesis. Here, we describe the crucial role of SND1 in cancer development and progression, and highlight SND1 as a potential target for therapeutic intervention.
doi:10.3892/ijo.2014.2766
PMCID: PMC4277250  PMID: 25405367
staphylococcal nuclease and tudor domain containing 1; astrocyte elevated gene-1; cancer; metastasis
25.  Novel Role of MDA-9/Syntenin in Regulating Urothelial Cell Proliferation by Modulating EGFR Signaling 
Purpose
Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression.
Experimental Design
Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knock down was examined in multiple cells lines and key findings were validated in primary tumors.
Results
Significantly higher (p= 0.002–0.003) expression of MDA-9/Syntenin was observed in 64% (28/44) of primary tumors and an association was evident with stage (p=0.01), grade (p=0.03) and invasion status (p=0.02). MDA-9/Syntenin overexpression in non-tumorigenic HUC-1 cells increased proliferation (p=0.0012), invasion (p=0.0001) and EGFR, AKT, PI3K and c-Src expression. Alteration of Beta-catenin, E-Cadherin, Vimentin, Claudin-1, ZO-1 and TCF4 expression were also observed. MDA-9/Syntenin knock down in 3 UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and co-localization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin: AKT expressions with stage (p=0.04, EGFR), (p=0.01, AKT). A correlation between MDA-9/Syntenin: β-catenin co-expression with stage (p=0.03) and invasion (p=0.04) was also evident.
Conclusions
Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring and therapeutic strategies for managing UCC.
doi:10.1158/1078-0432.CCR-13-0585
PMCID: PMC3872137  PMID: 23873690
Urothelial cancer; MDA-9/Syntenin; invasion; EGFR signaling

Results 1-25 (86)