Search tips
Search criteria

Results 1-25 (119)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  A Preclinical Evaluation of Neural Stem Cell–Based Cell Carrier for Targeted Antiglioma Oncolytic Virotherapy 
Oncolytic adenoviral virotherapy (OV) is a highly promising approach for the treatment of glioblastoma multiforme (GBM). In practice, however, the approach is limited by poor viral distribution and spread throughout the tumor mass.
To enhance viral delivery, replication, and spread, we used a US Food and Drug Administration–approved neural stem cell line (NSC), HB1.F3.CD, which is currently employed in human clinical trials. HB1.F3.CD cells were loaded with an oncolytic adenovirus, CRAd-Survivin-pk7, and mice bearing various human-derived GBMs were assessed with regard to NSC migration, viral replication, and therapeutic efficacy. Survival curves were evaluated with Kaplan–Meier methods. All statistical tests were two-sided.
Antiglioma activity of OV-loaded HB1.F3.CD cells was effective against clinically relevant human-derived glioma models as well as a glioma stem cell–enriched xenograft model. Median survival was prolonged by 34% to 50% compared with mice treated with OV alone (GBM43FL model median survival = 19.5 days, OV alone vs NSC + OV, hazard ratio of survival = 2.26, 95% confidence interval [CI] = 1.21 to 12.23, P = .02; GBM12 model median survival = 43.5 days, OV alone vs NSC + OV, hazard ratio of survival = 2.53, 95% CI = 1.21 to 10.38, P = .02). OV-loaded HB1.F3.CD cells were shown to effectively migrate to the contralateral hemisphere and hand off the therapeutic payload of OV to targeted glioma cells. In vivo distribution and migratory kinetics of the OV-loaded HB1.F3.CD cells were successfully monitored in real time by magnetic resonance imaging. OV-loaded NSCs retained their differentiation fate and were nontumorigenic in vivo.
HB1.F3.CD NSCs loaded with CRAd-Survivin-pk7 overcome major limitations of OV in vivo and warrant translation in a phase I human clinical trial for patients with GBM.
PMCID: PMC3699440  PMID: 23821758
2.  Antiglioma oncolytic virotherapy: unattainable goal or a success story in the making? 
Future virology  2013;8(7):675-693.
Initial observations from as early as the mid-1800s suggested that patients suffering from hematological malignancies would transiently go into remission upon naturally contracting viral infections laid the foundation for the oncolytic virotherapy research field. Since then, research focusing on anticancer oncolytic virotherapy has rapidly evolved. Today, oncolytic viral vectors have been engineered to stimulate and manipulate the host immune system, selectively targeting tumor tissues while sparing non-neoplastic cells. Glioblastoma multiforme, the most common adult primary brain tumor, has a disasterous history. It is one of the most deadly cancers known to humankind. Over the last century our understanding of this disease has grown exponentially. However, the median survival of patients suffering from this disease has only been extended by a few months. Even with the best, most aggressive modern therapeutic approaches available, malignant gliomas are still virtually 100% fatal. Motivated by the desperate need to find effective treatment strategies, more investments have been applied to oncolytic virotherapy preclinical and clinical studies. In this review we will discuss the antiglioma oncolytic virotherapy research field. We will survey its history and the principles laid down to serve as basis for preclinical works. We will also debate the variety of viral vectors used, their clinical applications, the lessons learned from clinical trials and possible future directions.
PMCID: PMC4043995  PMID: 24910708
glioblastoma multiforme; malignant glioma; oncolytic virus; virotherapy
3.  A High Performance Nano-Bio Photocatalyst for Targeted Brain Cancer Therapy 
Nano letters  2009;9(9):3337-3342.
We report pronounced and specific anti-glioblastoma cell phototoxicity of 5 nm TiO2 particles covalently tethered to an antibody via dihydroxybenzene bivalent linker. The linker application enables absorption of a visible part of solar spectrum by the nanobio hybrid. The phototoxicity is mediated by reactive oxygen species (ROS) that initiate cancer cell programmed cell death. Synchrotron X-Ray Fluorescence Microscopy (XFM) was applied for direct visualization of the nanobioconjugate distribution through a single brain cancer cell at the sub-micrometer scale.
PMCID: PMC4019973  PMID: 19640002
4.  Magnetic Resonance Imaging Tracking of Ferumoxytol-Labeled Human Neural Stem Cells: Studies Leading to Clinical Use 
Stem Cells Translational Medicine  2013;2(10):766-775.
These preclinical studies of ferumoxytol-labeled neural stem cells (NSCs) for magnetic resonance imaging (MRI) cell tracking led to U.S. FDA approval for first-in-human use of this labeling method for NSCs transplanted into brain tumor patients. Ferumoxytol labeling of NSCs did not affect cell viability, growth kinetics, or tumor tropism, and enabled MRI visualization of NSC distribution in vivo. These studies support the clinical development of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking.
Numerous stem cell-based therapies are currently under clinical investigation, including the use of neural stem cells (NSCs) as delivery vehicles to target therapeutic agents to invasive brain tumors. The ability to monitor the time course, migration, and distribution of stem cells following transplantation into patients would provide critical information for optimizing treatment regimens. No effective cell-tracking methodology has yet garnered clinical acceptance. A highly promising noninvasive method for monitoring NSCs and potentially other cell types in vivo involves preloading them with ultrasmall superparamagnetic iron oxide nanoparticles (USPIOs) to enable cell tracking using magnetic resonance imaging (MRI). We report here the preclinical studies that led to U.S. Food and Drug Administration approval for first-in-human investigational use of ferumoxytol to label NSCs prior to transplantation into brain tumor patients, followed by surveillance serial MRI. A combination of heparin, protamine sulfate, and ferumoxytol (HPF) was used to label the NSCs. HPF labeling did not affect cell viability, growth kinetics, or tumor tropism in vitro, and it enabled MRI visualization of NSC distribution within orthotopic glioma xenografts. MRI revealed dynamic in vivo NSC distribution at multiple time points following intracerebral or intravenous injection into glioma-bearing mice that correlated with histological analysis. Preclinical safety/toxicity studies of intracerebrally administered HPF-labeled NSCs in mice were also performed, and they showed no significant clinical or behavioral changes, no neuronal or systemic toxicities, and no abnormal accumulation of iron in the liver or spleen. These studies support the clinical use of ferumoxytol labeling of cells for post-transplant MRI visualization and tracking.
PMCID: PMC3785261  PMID: 24014682
Cell transplantation; Cellular therapy; Clinical trials; In vivo tracking; Neural stem cell; Stem cell; Stem cell transplantation
5.  The Timing of Neural Stem Cell-Based Virotherapy Is Critical for Optimal Therapeutic Efficacy When Applied With Radiation and Chemotherapy for the Treatment of Glioblastoma 
This study established a logical experimental model to recapitulate the complex clinical scenario for the treatment of glioblastoma multiforme (GBM) and tested the compatibility of neural stem cells loaded with oncolytic virus. Data from this report support the testing of CRAd-S-pk7-loaded HB1.F3-CD cells in the clinical setting and argue for a multimodality approach for the treatment of patients with GBM.
Glioblastoma multiforme (GBM) remains fatal despite intensive surgical, radiotherapeutic, and chemotherapeutic interventions. Neural stem cells (NSCs) have been used as cellular vehicles for the transportation of oncolytic virus (OV) to therapeutically resistant and infiltrative tumor burdens throughout the brain. The HB1.F3-CD human NSC line has demonstrated efficacy as a cell carrier for the delivery of a glioma tropic OV CRAd-Survivin-pk7 (CRAd-S-pk7) in vitro and in animal models of glioma. At this juncture, no study has investigated the effectiveness of OV-loaded NSCs when applied in conjunction with the standard of care for GBM treatment, and therefore this study was designed to fill this void. Here, we show that CRAd-S-pk7-loaded HB1.F3-CD cells retain their tumor-tropic properties and capacity to function as in situ viral manufacturers in the presence of ionizing radiation (XRT) and temozolomide (TMZ). Furthermore, for the first time, we establish a logical experimental model that aims to recapitulate the complex clinical scenario for the treatment of GBM and tests the compatibility of NSCs loaded with OV. We report that applying OV-loaded NSCs together with XRT and TMZ can increase the median survival of glioma bearing mice by approximately 46%. Most importantly, the timing and order of therapeutic implementation impact therapeutic outcome. When OV-loaded NSCs are delivered prior to rather than after XRT and TMZ treatment, the median survival of mice bearing patient-derived GBM43 glioma xenografts is extended by 30%. Together, data from this report support the testing of CRAd-S-pk7-loaded HB1.F3-CD cells in the clinical setting and argue in favor of a multimodality approach for the treatment of patients with GBM.
PMCID: PMC3754466  PMID: 23926209
Glioma; Gene therapy; Neural stem cell; Adenovirus; Virotherapy; Radiation; Chemotherapy; Temozolomide
6.  The art of gene therapy for glioma: a review of the challenging road to the bedside 
Glioblastoma multiforme (GBM) is a highly invasive brain tumour that is unvaryingly fatal in humans despite even aggressive therapeutic approaches such as surgical resection followed by chemotherapy and radiotherapy. Unconventional treatment options such as gene therapy provide an intriguing option for curbing glioma related deaths. To date, gene therapy has yielded encouraging results in preclinical animal models as well as promising safety profiles in phase I clinical trials, but has failed to demonstrate significant therapeutic efficacy in phase III clinical trials. The most widely studied antiglioma gene therapy strategies are suicide gene therapy, genetic immunotherapy and oncolytic virotherapy, and we have attributed the challenging transition of these modalities into the clinic to four major roadblocks: (1) anatomical features of the central nervous system, (2) the host immune system, (3) heterogeneity and invasiveness of GBM and (4) limitations in current GBM animal models. In this review, we discuss possible ways to jump these hurdles and develop new gene therapies that may be used alone or in synergy with other modalities to provide a powerful treatment option for patients with GBM.
PMCID: PMC3543505  PMID: 22993449
7.  The potential of polymeric micelles in the context of glioblastoma therapy 
Glioblastoma multiforme (GBM), a type of malignant glioma, is the most common form of brain cancer found in adults. The current standard of care for GBM involves adjuvant temozolomide-based chemotherapy in conjunction with radiotherapy, yet patients still suffer from poor outcomes with a median survival of 14.6 months. Many novel therapeutic agents that are toxic to GBM cells in vitro cannot sufficiently accumulate at the site of an intracranial tumor after systemic administration. Thus, new delivery strategies must be developed to allow for adequate intratumoral accumulation of such therapeutic agents. Polymeric micelles offer the potential to improve delivery to brain tumors as they have demonstrated the capacity to be effective carriers of chemotherapy drugs, genes, and proteins in various preclinical GBM studies. In addition to this, targeting moieties and trigger-dependent release mechanisms incorporated into the design of these particles can promote more specific delivery of a therapeutic agent to a tumor site. However, despite these advantages, there are currently no micelle formulations targeting brain cancer in clinical trials. Here, we highlight key aspects of the design of polymeric micelles as therapeutic delivery systems with a review of their clinical applications in several non-brain tumor cancer types. We also discuss their potential to serve as nanocarriers targeting GBM, the major barriers preventing their clinical implementation in this disease context, as well as current approaches to overcome these limitations.
PMCID: PMC3874582  PMID: 24416018
glioblastoma; micelles; nanoparticle; drug delivery; targeted delivery; controlled release
8.  Chemokines in tumor progression and metastasis 
Oncotarget  2013;4(12):2171-2185.
Chemokines play a vital role in tumor progression and metastasis. Chemokines are involved in the growth of many cancers including breast cancer, ovarian cancer, pancreatic cancer, melanoma, lung cancer, gastric cancer, acute lymphoblastic leukemia, colon cancer, non-small lung cancer and non-hodgkin's lymphoma among many others. The expression of chemokines and their receptors is altered in many malignancies and leads to aberrant chemokine receptor signaling. This review focuses on the role of chemokines in key processes that facilitate tumor progression including proliferation, senescence, angiogenesis, epithelial mesenchymal transition, immune evasion and metastasis.
PMCID: PMC3926818  PMID: 24259307
Chemokines; chemokine receptors; cancer; metastasis
9.  IDO expression in brain tumors increases the recruitment of regulatory T cells and negatively impacts survival 
Glioblastoma multiforme (GBM) is an aggressive adult brain tumor with a poor prognosis. One hallmark of GBM is the accumulation of immunosuppressive and tumor-promoting CD4+FoxP3+GITR+ regulatory T cells (Tregs). Here, we investigated the role of indoleamine 2,3 dioxygenase (IDO) in brain tumors and the impact on Treg recruitment.
Experimental Design
To determine the clinical relevance of IDO expression in brain tumors, we first correlated patient survival to the level of IDO expression from resected glioma specimens. We also used novel orthotopic and transgenic models of glioma to study how IDO affects Tregs. The impact of tumor-derived and peripheral IDO expression on Treg recruitment, GITR expression and long-term survival was determined.
Downregulated IDO expression in glioma predicted a significantly better prognosis in patients. Co-incidently, both IDO -competent and -deficient mice showed a survival advantage bearing IDO-deficient brain tumors, when compared to IDO-competent brain tumors. Moreover, IDO-deficiency was associated with a significant decrease in brain-resident Tregs, both in orthotopic and transgenic mouse glioma models. IDO-deficiency was also associated with lower GITR expression levels on Tregs. Interestingly, the long-term survival advantage conferred by IDO-deficiency was lost in T cell-deficient mice.
These clinical and pre-clinical data confirm that IDO expression increases the recruitment of immunosuppressive Tregs which leads to tumor outgrowth. In contrast, IDO deficiency decreases Treg recruitment and enhances T cell-mediated tumor rejection. Thus, the data suggest a critical role for IDO-mediated immunosuppression in glioma and supports the continued investigation of IDO-Treg interactions in the context of brain tumors.
PMCID: PMC3500434  PMID: 22932670
immunosuppression; tryptophan; glioblastoma; metabolism; immunotherapy
10.  New Agents for Targeting of IL-13RA2 Expressed in Primary Human and Canine Brain Tumors 
PLoS ONE  2013;8(10):e77719.
Interleukin 13 receptor alpha 2 (IL-13RA2) is over-expressed in a vast majority of human patients with high-grade astrocytomas like glioblastoma. Spontaneous astrocytomas in dogs resemble human disease and have been proposed as translational model system for investigation of novel therapeutic strategies for brain tumors. We have generated reagents for both detection and therapeutic targeting of IL-13RA2 in human and canine brain tumors. Peptides from three different regions of IL-13RA2 with 100% sequence identity between human and canine receptors were used as immunogens for generation of monoclonal antibodies. Recombinant canine mutant IL-13 (canIL-13.E13K) and canIL-13.E13K based cytotoxin were also produced. The antibodies were examined for their immunoreactivities in western blots, immunohistochemistry, immunofluorescence and cell binding assays using human and canine tumor specimen sections, tissue lysates and established cell lines; the cytotoxin was tested for specific cell killing. Several isolated MAbs were immunoreactive to IL-13RA2 in western blots of cell and tissue lysates from glioblastomas from both human and canine patients. Human and canine astrocytomas and oligodendrogliomas were also positive for IL-13RA2 to various degrees. Interestingly, both human and canine meningiomas also exhibited strong reactivity. Normal human and canine brain samples were virtually negative for IL-13RA2 using the newly generated MAbs. MAb 1E10B9 uniquely worked on tissue specimens and western blots, bound live cells and was internalized in GBM cells over-expressing IL-13RA2. The canIL-13.E13K cytotoxin was very potent and specific in killing canine GBM cell lines. Thus, we have obtained several monoclonal antibodies against IL-13RA2 cross-reacting with human and canine receptors. In addition to GBM, other brain tumors, such as high grade oligodendrogliomas, meningiomas and canine choroid plexus papillomas, appear to express the receptor at high levels and thus may be appropriate candidates for IL-13RA2-targeted imaging/therapies. Canine spontaneous primary brain tumors represent an excellent translational model for human counterparts.
PMCID: PMC3797726  PMID: 24147065
11.  Functional Cross Talk between CXCR4 and PDGFR on Glioblastoma Cells Is Essential for Migration 
PLoS ONE  2013;8(9):e73426.
Glioblastoma (GBM) is the most common and aggressive form of brain tumor, characterized by high migratory behavior and infiltration in brain parenchyma which render classic therapeutic approach ineffective. The migratory behaviour of GBM cells could be conditioned by a number of tissue- and glioma-derived cytokines and growth factors. Although the pro-migratory action of CXCL12 on GBM cells in vitro and in vivo is recognized, the molecular mechanisms involved are not clearly identified. In fact the signaling pathways involved in the pro-migratory action of CXCL12 may differ in individual glioblastoma and integrate with those resulting from abnormal expression and activation of growth factor receptors. In this study we investigated whether some of the receptor tyrosine kinases commonly expressed in GBM cells could cooperate with CXCL12/CXCR4 in their migratory behavior. Our results show a functional cross-talk between CXCR4 and PDGFR which appears to be essential for GBM chemotaxis.
PMCID: PMC3759384  PMID: 24023874
12.  Anti-angiogenic therapy increases intratumoral adenovirus distribution by inducing collagen degradation 
Gene therapy  2012;20(3):318-327.
Conditionally replicating adenoviruses (CRAd) are a promising class of gene therapy agents that can overcome already known glioblastoma (GBM) resistance mechanisms but have limited distribution upon direct intratumoral (i.t.) injection. Collagen bundles in the extracellular matrix (ECM) play an important role in inhibiting virus distribution. In fact, ECM pre-treatment with collagenases improves virus distributions to tumor cells. Matrix metalloproteinases (MMPs) are an endogenous class of collagenases secreted by tumor cells whose function can be altered by different drugs including anti-angiogenic agents, such as bevacizumab. In this study we hypothesized that up-regulation of MMP activity during antiangiogenic therapy can improve CRAd-S-pk7 distribution in GBM. We find that MMP-2 activity in human U251 GBM xenografts increases (*p=0.03) and collagen IV content decreases (*p=0.01) during vascular endothelial growth factor (VEGF-A) antibody neutralization. After proving that collagen IV inhibits CRAd-S-pk7 distribution in U251 xenografts (Spearman rho= −0.38; **p=0.003), we show that VEGF blocking antibody treatment followed by CRAd-S-pk7 i.t. injection reduces U251 tumor growth more than each individual agent alone (***p<0.0001). Our data proposes a novel approach to improve virus distribution in tumors by relying on the early effects of anti-angiogenic therapy.
PMCID: PMC3443547  PMID: 22673390
anti-VEGF; bevacizumab; oncolytic virus; adenovirus; metalloproteinase; glioma; glioblastoma; brain tumor
13.  CMV-Independent Lysis of Glioblastoma by Ex Vivo Expanded/Activated Vδ1+ γδ T Cells 
PLoS ONE  2013;8(8):e68729.
Vδ2neg γδ T cells, of which Vδ1+ γδ T cells are by far the largest subset, are important effectors against CMV infection. Malignant gliomas often contain CMV genetic material and proteins, and evidence exists that CMV infection may be associated with initiation and/or progression of glioblastoma multiforme (GBM). We sought to determine if Vδ1+ γδ T cells were cytotoxic to GBM and the extent to which their cytotoxicity was CMV dependent. We examined the cytotoxic effect of ex vivo expanded/activated Vδ1+ γδ T cells from healthy CMV seropositive and CMV seronegative donors on unmanipulated and CMV-infected established GBM cell lines and cell lines developed from short- term culture of primary tumors. Expanded/activated Vδ1+ T cells killed CMV-negative U251, U87, and U373 GBM cell lines and two primary tumor explants regardless of the serologic status of the donor. Experimental CMV infection did not increase Vδ1+ T cell - mediated cytotoxicity and in some cases the cell lines were more resistant to lysis when infected with CMV. Flow cytometry analysis of CMV-infected cell lines revealed down-regulation of the NKG2D ligands ULBP-2, and ULBP-3 as well as MICA/B in CMV-infected cells. These studies show that ex vivo expanded/activated Vδ1+ γδ T cells readily recognize and kill established GBM cell lines and primary tumor-derived GBM cells regardless of whether CMV infection is present, however, CMV may enhance the resistance GBM cell lines to innate recognition possibly contributing to the poor immunogenicity of GBM.
PMCID: PMC3737218  PMID: 23950874
14.  Lyn Facilitates Glioblastoma Cell Survival under Conditions of Nutrient Deprivation by Promoting Autophagy 
PLoS ONE  2013;8(8):e70804.
Members of the Src family kinases (SFK) can modulate diverse cellular processes, including division, death and survival, but their role in autophagy has been minimally explored. Here, we investigated the roles of Lyn, a SFK, in promoting the survival of human glioblastoma tumor (GBM) cells in vitro and in vivo using lentiviral vector-mediated expression of constitutively-active Lyn (CA-Lyn) or dominant-negative Lyn (DN-Lyn). Expression of either CA-Lyn or DN-Lyn had no effect on the survival of U87 GBM cells grown under nutrient-rich conditions. In contrast, under nutrient-deprived conditions (absence of supplementation with L-glutamine, which is essential for growth of GBM cells, and FBS) CA-Lyn expression enhanced survival and promoted autophagy as well as inhibiting cell death and promoting proliferation. Expression of DN-Lyn promoted cell death. In the nutrient-deprived GBM cells, CA-Lyn expression enhanced AMPK activity and reduced the levels of pS6 kinase whereas DN-Lyn enhanced the levels of pS6 kinase. Similar results were obtained in vitro using another cultured GBM cell line and primary glioma stem cells. On propagation of the transduced GBM cells in the brains of nude mice, the CA-Lyn xenografts formed larger tumors than control cells and autophagosomes were detectable in the tumor cells. The DN-Lyn xenografts formed smaller tumors and contained more apoptotic cells. Our findings suggest that on nutrient deprivation in vitro Lyn acts to enhance the survival of GBM cells by promoting autophagy and proliferation as well as inhibiting cell death, and Lyn promotes the same effects in vivo in xenograft tumors. As the levels of Lyn protein or its activity are elevated in several cancers these findings may be of broad relevance to cancer biology.
PMCID: PMC3732228  PMID: 23936469
15.  Inhibition of MMP14 potentiates the therapeutic effect of temozolomide and radiation in gliomas 
Cancer Medicine  2013;2(4):457-467.
Metalloproteinases are membrane-bound proteins that play a role in the cellular responses to antiglioma therapy. Previously, it has been shown that treatment of glioma cells with temozolomide (TMZ) and radiation (XRT) induces the expression of metalloproteinase 14 (MMP14). To investigate the role of MMP14 in gliomagenesis, we used several chemical inhibitors which affect MMP14 expression. Of all the inhibitors tested, we found that Marimastat not only inhibits the expression of MMP14 in U87 and U251 glioma cells, but also induces cell cycle arrest. To determine the relationship between MMP14 inhibition and alteration of the cell cycle, we used an RNAi technique. Genetic knockdown of MMP14 in U87 and U251 glioma cells induced G2/M arrest and decreased proliferation. Mechanistically, we show that TMZ and XRT regulated expression of MMP14 in clinical samples and in vitro models through downregulation of microRNA374. In vivo genetic knockdown of MMP14 significantly decreased tumor growth of glioma xenografts and improved survival of glioma-bearing mice. Moreover, the combination of MMP14 silencing with TMZ and XRT significantly improved the survival of glioma-bearing mice compared to a single modality treatment group. Therefore, we show that the inhibition of MMP14 sensitizes tumor cells to TMZ and XRT and could be used as a future strategy for antiglioma therapy.
Glioblastoma remains an incurable form of brain cancer. In this manuscript, we show that inhibition of MMP14 can potentiate the efficacy of current standard of care which includes chemo- and radiotherapy.
PMCID: PMC3799280  PMID: 24156018
Brain cancer; glioma; MMP14; radiation; temozolomide
16.  Oncolytic Adenovirus Expressing IL-23 and p35 Elicits IFN-γ- and TNF-α-Co-Producing T Cell-Mediated Antitumor Immunity 
PLoS ONE  2013;8(7):e67512.
Cytokine immunogene therapy is a promising strategy for cancer treatment. Interleukin (IL)-12 boosts potent antitumor immunity by inducing T helper 1 cell differentiation and stimulating cytotoxic T lymphocyte and natural killer cell cytotoxicity. IL-23 has been proposed to have similar but not overlapping functions with IL-12 in inducing Th1 cell differentiation and antitumor immunity. However, the therapeutic effects of intratumoral co-expression of IL-12 and IL-23 in a cancer model have yet to be investigated. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral inoculation of oncolytic adenovirus co-expressing IL-23 and p35, RdB/IL23/p35. Intratumoral administration of RdB/IL23/p35 elicited strong antitumor effects and increased survival in a murine B16-F10 syngeneic tumor model. The levels of IL-12, IL-23, interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α) were elevated in RdB/IL23/p35-treated tumors. Moreover, the proportion of regulatory T cells was markedly decreased in mice treated with RdB/IL23/p35. Consistent with these data, mice injected with RdB/IL23/p35 showed massive infiltration of CD4+ and CD8+ T cells into the tumor as well as enhanced induction of tumor-specific immunity. Importantly, therapeutic mechanism of antitumor immunity mediated by RdB/IL23/p35 is associated with the generation and recruitment of IFN-γ- and TNF-α-co-producing T cells in tumor microenvironment. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-23 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.
PMCID: PMC3701076  PMID: 23844018
17.  Clinical Significance of KISS1 Protein Expression for Brain Invasion and Metastasis 
Cancer  2011;118(8):2096-2105.
Metastases to the brain represent a feared complication and contribute to the morbidity and mortality of breast cancer. Despite improvements in therapy, prognostic factors for development of metastases are lacking. KISS1 is a metastasis suppressor that demonstrates inhibition of metastases formation in several types of cancer. The purpose of this study was to determine the importance of KISS1 expression in breast cancer progression and the development of intracerebral lesions.
In this study, we performed a comparative analysis of 47 brain metastases and 165 primary breast cancer specimens by using the antihuman KISS1 antibody. To compare KISS1 expression between different groups, we used a 3-tier score and the automated score computer software (ACIS) evaluation. To reveal association between mRNA and protein expression, we used quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Significance of immunohistochemistry stainings was correlated with clinicopathological data.
We identified that KISS1 expression is significantly higher in primary breast cancer compared with brain metastases (P < .05). The mRNA analysis performed on 33 selected ductal carcinoma brain metastatic lesions and 36 primary ductal carcinomas revealed a statistically significant down-regulation of KISS1 protein in metastatic cases (P = .04). Finally, we observed a significant correlation between expression of KISS1 and metastasis-free survival (P = .04) along with progression of breast cancer and expression of KISS1 in primary breast cancer specimens (P = .044).
In conclusion, our study shows that breast cancer expresses KISS1. Cytoplasmic expression of KISS1 may be used as a prognostic marker for increased risk of breast cancer progression.
PMCID: PMC3674482  PMID: 21928364
KISS1; breast cancer; brain metastases; mediator; suppressor; IHC; RNA
18.  Recent developments on immunotherapy for brain cancer 
Expert Opinion on Emerging Drugs  2012;17(2):181-202.
Brain tumors are a unique class of cancers since they are anatomically shielded from normal immunosurveillance by the blood brain barrier, lack a normal lymphatic drainage system and reside in a potently immunosuppressive environment. Of the primary brain cancers, glioblastoma multiforme (GBM) is the most common and aggressive in adults. Although treatment options include surgery, radiation and chemotherapy, the average lifespan of GBM patients remains at only 14.6 months post-diagnosis.
Areas covered
A review of key cellular and molecular immune system mediators in the context of brain tumors including TGF-β, cytotoxic T cells, Tregs, CTLA-4, PD-1, and IDO, is discussed. In addition, prognostic factors, currently utilized immunotherapeutic strategies, on-going clinical trials, and a discussion of new or potential immunotherapies for brain tumor patients are considered.
Expert opinion
Current drugs that improve the quality of life and overall survival in patients with brain tumors, especially for GBM, are poorly effective. This disease requires a re-analysis of currently accepted treatment strategies, as well as newly designed approaches. Here, we review the fundamental aspects of immunosuppression in brain tumors, new and promising immunotherapeutic drugs, as well as combinatorial strategies that focus on the simultaneous inhibition of immunosuppressive hubs, both in immune- and brain tumor-cells, which is critical to consider for achieving future success for the treatment of this devastating disease.
PMCID: PMC3361622  PMID: 22533851
Glioblastoma; glioma; Treg; Rindopepimut; CTLA-4; PD-1; IDO; TGF-β
19.  A novel adenoviral vector labeled with superparamagnetic iron oxide nanoparticles for real-time tracking of viral delivery 
In vivo tracking of gene therapy vectors challenges the investigation and improvement of biodistribution of these agents in the brain, a key feature for their targeting of infiltrative malignant gliomas. The glioma-targeting Ad5/3-cRGD gene therapy vector was covalently bound to super-paramagnetic iron oxide (Fe3O4) nanoparticles (SPION) to monitor its distribution by MRI. Transduction of labeled and unlabeled vectors was assessed on the U87 glioma cell line and normal human astrocytes (NHA), and was higher in U87 compared to NHA, but was similar between labeled and unlabeled virus. An in vivo study was performed by intracranial subcortical injection of labeled-Ad5/3-cRGD particles into a pig brain. The labeled vector appeared in vivo as a T2-weighted hyperintensity and a T2-gradient echo signal at the injection site, persisting up to 72 hours post-injection. We describe a glioma-targeting vector that is labeled with SPION, thereby allowing for MRI detection with no change in transduction capability.
PMCID: PMC3572211  PMID: 22516547
Adenovirus; Gene therapy; Nanoparticle
20.  Synergy between CD8 T Cells and Th1 or Th2 Polarised CD4 T Cells for Adoptive Immunotherapy of Brain Tumours 
PLoS ONE  2013;8(5):e63933.
The feasibility of cancer immunotherapy mediated by T lymphocytes is now a clinical reality. Indeed, many tumour associated antigens have been identified for cytotoxic CD8 T cells, which are believed to be key mediators of tumour rejection. However, for aggressive malignancies in specialised anatomic sites such as the brain, a limiting factor is suboptimal tumour infiltration by CD8 T cells. Here we take advantage of recent advances in T cell biology to differentially polarise CD4 T cells in order to explore their capacity to enhance immunotherapy. We used an adoptive cell therapy approach to work with clonal T cell populations of defined specificity. Th1 CD4 T cells preferentially homed to and accumulated within intracranial tumours compared with Th2 CD4 T cells. Moreover, tumour-antigen specific Th1 CD4 T cells enhanced CD8 T cell recruitment and function within the brain tumour bed. Survival of mice bearing intracranial tumours was significantly prolonged when CD4 and CD8 T cells were co-transferred. These results should encourage further definition of tumour antigens recognised by CD4 T cells, and exploitation of both CD4 and CD8 T cell subsets to optimise T cell therapy of cancer.
PMCID: PMC3662716  PMID: 23717511
21.  Gliadel for brain metastasis 
Surgical Neurology International  2013;4(Suppl 4):S289-S293.
With therapies for systemic malignancy improving, life expectancy for cancer patients is becoming increasingly dependent on control of brain metastatic disease. Despite improvements in surgical and radiotherapy modalities for control of brain metastasis, the prognosis for patients with brain metastases is poor. The development of controlled release polymers has lead to novel new therapies for malignant brain tumors consisting of direct surgical delivery of chemotherapy agents to the tumor bed and sustained chemotherapy release over a prolonged period of time. Although there is a large body of literature in support of BCNU polymer wafer for primary brain malignancy and experimental brain metastases, clinical studies evaluating the BCNU polymer wafer for brain metastatic disease are relatively sparse. In this review, we discuss the role of the BCNU polymer wafer for brain metastasis focusing specifically on rationale for use of locally delivered sustained release polymers, history of the BCNU polymer wafer, and emerging studies examining the role of the BCNU polymer wafer for metastatic brain tumors.
PMCID: PMC3656564  PMID: 23717799
Brain tumor; brain metastasis; BCNU polymer wafer; gliadel chemotherapy; local delivery
22.  Myeloablative Temozolomide Enhances CD8+ T-Cell Responses to Vaccine and Is Required for Efficacy against Brain Tumors in Mice 
PLoS ONE  2013;8(3):e59082.
Temozolomide (TMZ) is an alkylating agent shown to prolong survival in patients with high grade glioma and is routinely used to treat melanoma brain metastases. A prominent side effect of TMZ is induction of profound lymphopenia, which some suggest may be incompatible with immunotherapy. Conversely, it has been proposed that recovery from chemotherapy-induced lymphopenia may actually be exploited to potentiate T-cell responses. Here, we report the first demonstration of TMZ as an immune host-conditioning regimen in an experimental model of brain tumor and examine its impact on antitumor efficacy of a well-characterized peptide vaccine. Our results show that high-dose, myeloablative (MA) TMZ resulted in markedly reduced CD4+, CD8+ T-cell and CD4+Foxp3+ TReg counts. Adoptive transfer of naïve CD8+ T cells and vaccination in this setting led to an approximately 70-fold expansion of antigen-specific CD8+ T cells over controls. Ex vivo analysis of effector functions revealed significantly enhanced levels of pro-inflammatory cytokine secretion from mice receiving MA TMZ when compared to those treated with a lower lymphodepletive, non-myeloablative (NMA) dose. Importantly, MA TMZ, but not NMA TMZ was uniquely associated with an elevation of endogenous IL-2 serum levels, which we also show was required for optimal T-cell expansion. Accordingly, in a murine model of established intracerebral tumor, vaccination-induced immunity in the setting of MA TMZ–but not lymphodepletive, NMA TMZ–led to significantly prolonged survival. Overall, these results may be used to leverage the side-effects of a clinically-approved chemotherapy and should be considered in future study design of immune-based treatments for brain tumors.
PMCID: PMC3601076  PMID: 23527092
23.  Drug-Loaded Nanoparticle Systems And Adult Stem Cells: A Potential Marriage For The Treatment Of Malignant Glioma? 
Oncotarget  2013;4(3):378-396.
Despite all recent advances in malignant glioma research, only modest progress has been achieved in improving patient prognosis and quality of life. Such a clinical scenario underscores the importance of investing in new therapeutic approaches that, when combined with conventional therapies, are able to effectively eradicate glioma infiltration and target distant tumor foci. Nanoparticle-loaded delivery systems have recently arisen as an exciting alternative to improve targeted anti-glioma drug delivery. As drug carriers, they are able to efficiently protect the therapeutic agent and allow for sustained drug release. In addition, their surface can be easily manipulated with the addition of special ligands, which are responsible for enhancing tumor-specific nanoparticle permeability. However, their inefficient intratumoral distribution and failure to target disseminated tumor burden still pose a big challenge for their implementation as a therapeutic option in the clinical setting. Stem cell-based delivery of drug-loaded nanoparticles offers an interesting option to overcome such issues. Their ability to incorporate nanoparticles and migrate throughout interstitial barriers, together with their inherent tumor-tropic properties and synergistic anti-tumor effects make these stem cell carriers a good fit for such combined therapy. In this review, we will describe the main nanoparticle delivery systems that are presently available in preclinical and clinical studies. We will discuss their mechanisms of targeting, current delivery methods, attractive features and pitfalls. We will also debate the potential applications of stem cell carriers loaded with therapeutic nanoparticles in anticancer therapy and why such an attractive combined approach has not yet reached clinical trials.
PMCID: PMC3717302  PMID: 23594406
Nanoparticle; drug delivery systems; stem cell carriers; malignant glioma; brain cancer; targeted delivery
24.  WNT10B/β-catenin signalling induces HMGA2 and proliferation in metastatic triple-negative breast cancer 
EMBO Molecular Medicine  2013;5(2):264-279.
Wnt/β-catenin signalling has been suggested to be active in basal-like breast cancer. However, in highly aggressive metastatic triple-negative breast cancers (TNBC) the role of β-catenin and the underlying mechanism(s) for the aggressiveness of TNBC remain unknown. We illustrate that WNT10B induces transcriptionally active β-catenin in human TNBC and predicts survival-outcome of patients with both TNBC and basal-like tumours. We provide evidence that transgenic murine Wnt10b-driven tumours are devoid of ERα, PR and HER2 expression and can model human TNBC. Importantly, HMGA2 is specifically expressed during early stages of embryonic mammogenesis and absent when WNT10B expression is lost, suggesting a developmentally conserved mode of action. Mechanistically, ChIP analysis uncovered that WNT10B activates canonical β-catenin signalling leading to up-regulation of HMGA2. Treatment of mouse and human triple-negative tumour cells with two Wnt/β-catenin pathway modulators or siRNA to HMGA2 decreases HMGA2 levels and proliferation. We demonstrate that WNT10B has epistatic activity on HMGA2, which is necessary and sufficient for proliferation of TNBC cells. Furthermore, HMGA2 expression predicts relapse-free-survival and metastasis in TNBC patients.
PMCID: PMC3569642  PMID: 23307470
cancer stem cells; HMGA2; metastasis; triple negative breast cancer; wnt signalling
25.  Oncolytic virotherapy for malignant glioma: translating laboratory insights into clinical practice 
Glioblastoma multiforme, one of the most common and aggressive brain tumors in adults, is highly resistant to currently available therapies and often recurs. Due to its poor prognosis and difficult management, there is an urgent need for the development and translation of new anti-glioma therapeutic approaches into the clinic. In this context, oncolytic virotherapy arises as an exciting treatment option for glioma patients. These natural or genetically engineered viruses are able to effectively infect cancer cells, inducing a specific anti-tumor cytotoxic effect. In addition, some viruses have been redesigned to modulate glioma microenvironment, to express cytokines to boost a systemic anti-glioma immune response and to incorporate angiostatic genes to decrease glioma vasculature. Although recent clinical trials have confirmed the safety of oncolytic virotherapies in the brain, their moderate clinical efficacy has not yet matched the encouraging preclinical laboratory results. In this review, we will discuss the leading anti-glioma virotherapy approaches that are presently under preclinical and clinical evaluation. We will also review different delivery methods, in vivo virus behavior, fate, replication, intratumoral spread, activation of anti-tumor immune response, and targeting of glioma stem cells. We will focus on the advantages and limitations of each therapeutic approach and how to overcome these hurdles to effectively translate exciting laboratory results into promising clinical trials.
PMCID: PMC3580888  PMID: 23443138
oncolytic virotherapy; malignant glioma; cancer stem cells; immunomodulation; challenges

Results 1-25 (119)