PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Regulation of autophagy by ceramide-CD95-PERK signaling 
Autophagy  2008;4(7):929-931.
The manuscripts by Park et al.1 and Zhang et al.2 were initially planned as studies to understand the regulation of cell survival in transformed cells treated with sorafenib and vorinostat, and in primary hepatocytes treated with a bile acid+MEK1/2 inhibitor. In both cell systems we discovered that the toxicity of sorafenib and vorinostat or bile acid+MEK1/2 inhibitor exposure depended on the generation of ceramide and the ligand-independent activation of the CD95 death receptor, with subsequent activation of pro-caspase 8. We noted, however, in these systems that, in parallel with death receptor–induced activation of the extrinsic pathway, CD95 signaling also promoted increased phosphorylation of PKR-like endoplasmic reticulum kinase (PERK) and eIF2α, increased expression of ATG5, and increased processing of LC3 and vesicularization of a GFP-LC3 construct. The knockdown of ATG5 expression blocked GFP-LC3 vesicularization and enhanced cell killing. Thus ceramide-CD95 signaling promoted cell death via activation of pro-caspase 8 and cell survival via autophagy. PERK was shown to signal in a switch-hitting fashion; PERK promoted CD95-DISC formation and an eIF2α-dependent reduction in c-FLIP-s levels that were essential for cell killing to proceed, but in parallel it also promoted autophagy that was protective. The death receptor-induced apoptosis and autophagy occur proximal to the receptor rather than the mitochondrion, and the relative flow of death receptor signaling into either pathway may determine cell fate. Finally, death receptor induced apoptosis and autophagy could be potential targets for therapeutic intervention.
PMCID: PMC3292039  PMID: 18719356
Vorinostat; Sorafenib; bile acid; CD95; autophagy; ceramide; cell death; ASMase
2.  Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation 
Cancer biology & therapy  2008;7(10):1648-1662.
We recently noted that low doses of sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I trials. The present studies mechanistically extended our initial observations. Low doses of sorafenib and vorinostat, but not the individual agents, caused an acidic sphingomyelinase and fumonisin B1-dependent increase in CD95 surface levels and CD95 association with caspase 8. Knock down of CD95 or FADD expression reduced sorafenib/vorinostat lethality. Signaling by CD95 caused PERK activation that was responsible for both promoting caspase 8 association with CD95 and for increased eIF2α phosphorylation; suppression of eIF2α function abolished drug combination lethality. Cell killing was paralleled by PERK- and eIF2α-dependent lowering of c-FLIP-s protein levels and over-expression of c-FLIP-s maintained cell viability. In a CD95-, FADD- and PERK-dependent fashion, sorafenib and vorinostat increased expression of ATG5 that was responsible for enhanced autophagy. Expression of PDGFRβ and FLT3 were essential for high dose single agent sorafenib treatment to promote autophagy. Suppression of PERK function reduced sorafenib and vorinostat lethality whereas suppression of ATG5 levels elevated sorafenib and vorinostat lethality. Over-expression of c-FLIP-s blocked apoptosis and enhanced drug-induced autophagy. Thus sorafenib and vorinostat promote ceramide-dependent CD95 activation followed by induction of multiple downstream survival regulatory signals: ceramide-CD95-PERK-FADD-pro-caspase 8 (death); ceramide-CD95-PERK-eIF2α -↓c-FLIP-s (death); ceramide-CD95-PERK-ATG5-autophagy (survival).
PMCID: PMC2674577  PMID: 18787411
Vorinostat; Sorafenib; CD95; c-FLIP-s; PDGFRβ; FLT3; autophagy; ceramide; cell death; ASMase
3.  Bile Acid Regulation of C/EBPβ, CREB, and c-Jun Function, via the Extracellular Signal-Regulated Kinase and c-Jun NH2-Terminal Kinase Pathways, Modulates the Apoptotic Response of Hepatocytes 
Molecular and Cellular Biology  2003;23(9):3052-3066.
Previously, we have demonstrated that deoxycholic acid (DCA)-induced signaling of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in primary hepatocytes is a protective response. In the present study, we examined the roles of the ERK and c-Jun NH2-terminal kinase (JNK) pathways, and downstream transcription factors, in the survival response of hepatocytes. DCA caused activation of the ERK1/2 and JNK1/2 pathways. Inhibition of either DCA-induced ERK1/2 or DCA-induced JNK1/2 signaling enhanced the apoptotic response of hepatocytes. Further analyses demonstrated that DCA-induced JNK2 signaling was cytoprotective whereas DCA-induced JNK1 signaling was cytotoxic. DCA-induced ERK1/2 activation was responsible for increased DNA binding of C/EBPβ, CREB, and c-Jun/AP-1. Inhibition of C/EBPβ, CREB, and c-Jun function promoted apoptosis following DCA treatment, and the level of apoptosis was further increased in the case of CREB and c-Jun, but not C/EBPβ, by inhibition of MEK1/2. The combined loss of CREB and c-Jun function or of C/EBPβ and c-Jun function enhanced DCA-induced apoptosis above the levels resulting from the loss of either factor individually; however, these effects were less than additive. Loss of c-Jun or CREB function correlated with increased expression of FAS death receptor and PUMA and decreased expression of c-FLIP-L and c-FLIP-S, proteins previously implicated in the modulation of the cellular apoptotic response. Collectively, these data demonstrate that multiple DCA-induced signaling pathways and transcription factors control hepatocyte survival.
doi:10.1128/MCB.23.9.3052-3066.2003
PMCID: PMC153195  PMID: 12697808
4.  Deoxycholic Acid (DCA) Causes Ligand-independent Activation of Epidermal Growth Factor Receptor (EGFR) and FAS Receptor in Primary Hepatocytes: Inhibition of EGFR/Mitogen-activated Protein Kinase-Signaling Module Enhances DCA-induced Apoptosis 
Molecular Biology of the Cell  2001;12(9):2629-2645.
Previous studies have argued that enhanced activity of the epidermal growth factor receptor (EGFR) and the mitogen-activated protein kinase (MAPK) pathway can promote tumor cell survival in response to cytotoxic insults. In this study, we examined the impact of MAPK signaling on the survival of primary hepatocytes exposed to low concentrations of deoxycholic acid (DCA, 50 μM). Treatment of hepatocytes with DCA caused MAPK activation, which was dependent upon ligand independent activation of EGFR, and downstream signaling through Ras and PI3 kinase. Neither inhibition of MAPK signaling alone by MEK1/2 inhibitors, nor exposure to DCA alone, enhanced basal hepatocyte apoptosis, whereas inhibition of DCA-induced MAPK activation caused ∼25% apoptosis within 6 h. Similar data were also obtained when either dominant negative EGFR-CD533 or dominant negative Ras N17 were used to block MAPK activation. DCA-induced apoptosis correlated with sequential cleavage of procaspase 8, BID, procaspase 9, and procaspase 3. Inhibition of MAPK potentiated bile acid-induced apoptosis in hepatocytes with mutant FAS-ligand, but did not enhance in hepatocytes that were null for FAS receptor expression. These data argues that DCA is causing ligand independent activation of the FAS receptor to stimulate an apoptotic response, which is counteracted by enhanced ligand-independent EGFR/MAPK signaling. In agreement with FAS-mediated cell killing, inhibition of caspase function with the use of dominant negative Fas-associated protein with death domain, a caspase 8 inhibitor (Ile-Glu-Thr-Asp-p-nitroanilide [IETD]) or dominant negative procaspase 8 blocked the potentiation of bile acid-induced apoptosis. Inhibition of bile acid-induced MAPK signaling enhanced the cleavage of BID and release of cytochrome c from mitochondria, which were all blocked by IETD. Despite activation of caspase 8, expression of dominant negative procaspase 9 blocked procaspase 3 cleavage and the potentiation of DCA-induced apoptosis. Treatment of hepatocytes with DCA transiently increased expression of the caspase 8 inhibitor proteins c-FLIP-S and c-FLIP-L that were reduced by inhibition of MAPK or PI3 kinase. Constitutive overexpression of c-FLIP-s abolished the potentiation of bile acid-induced apoptosis. Collectively, our data argue that loss of DCA-induced EGFR/Ras/MAPK pathway function potentiates DCA-stimulated FAS-induced hepatocyte cell death via a reduction in the expression of c-FLIP isoforms.
PMCID: PMC59700  PMID: 11553704
5.  A Role for Both Ets and C/EBP Transcription Factors and mRNA Stabilization in the MAPK-dependent Increase in p21 Cip-1/WAF1/mda6 Protein Levels in Primary Hepatocytes 
Molecular Biology of the Cell  2000;11(9):2915-2932.
In primary hepatocytes and HepG2 hepatoma cells, prolonged activation of the p42/44 mitogen-activated protein kinase (MAPK) pathway is associated with a reduction in DNA synthesis, mediated by increased expression of the cyclin-dependent kinase inhibitor protein p21 Cip-1/WAF1/mda6 (p21). This study was performed to evaluate the contribution of transcriptional and post-transcriptional regulation in this response. Prolonged activation of the MAPK pathway in wild-type or p21 null hepatocytes caused a large decrease and increase, respectively, in DNA synthesis. Prolonged activation of the MAPK pathway in either wild-type or p21 antisense HepG2 cells also caused large decreases and increases, respectively, in DNA synthesis. MAPK signaling increased the phosphorylation of the transcription factors Ets2, C/EBPα, and C/EBPβ, and rapidly increased transcription from the p21 promoter via multiple Ets- and C/EBP-elements within the enhancer region. Eight hours after MAPK activation, loss of C/EBPβ or Ets2 function significantly reduced MAPK-stimulated transcription from the p21 promoter and abolished increased p21 protein expression. At this time, MAPK signaling increased both p21 mRNA and p21 protein stabilities that were also demonstrated to be essential for a profound increase in p21 protein levels. Thirty-six hours after MAPK activation, transcription from the p21 promoter was still significantly reduced in cells without either C/EBPβ or Ets2 function; however, these cells were now capable of exhibiting a partial increase in p21 protein expression. In contrast, loss of C/EBPα function modestly reduced MAPK-stimulated transcription from the p21 promoter but strongly inhibited the ability of prolonged MAPK activation to increase protein levels of p21. This data suggested that prolonged enhancement of p21 protein levels may be under posttranscriptional control. In agreement with this hypothesis, prolonged MAPK signaling further increased p21 mRNA stability at 36 h, compared with the 8-h time point. Our data argue that MAPK signaling increased p21 promoter activity via multiple transcription factors, which alone were insufficient for a robust prolonged increase in p21 protein levels in primary hepatocytes, and that to increase p21 protein levels also required enhanced stabilization of p21 mRNA and p21 protein. Collectively, these data suggest that loss of transcription factor and mRNA/protein stabilization functions correlates with an inability of MAPK signaling to cause growth arrest versus proliferation in primary hepatocytes.
PMCID: PMC14965  PMID: 10982390

Results 1-5 (5)