PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  DNA DOUBLE-STRAND BREAK - INDUCED PRO-SURVIVAL SIGNALING 
Radiation and other types of DNA damaging agents induce a plethora of signaling events simultaneously originating from the nucleus, cytoplasm, and plasma membrane. As a result, this presents a dilemma when seeking to determine causal relationships and provide better insight into the intricacies of stress signaling. ATM plays critical roles in both nuclear and cytoplasmic signaling, of which, the DNA damage response (DDR) is the best characterized. We have recently created experimental conditions where the DNA damage signal alone can be studied while minimizing the influence from the extranuclear compartment. We have been able to document pro-survival and growth promoting signaling (via ATM-AKT-ERK) resulting from low levels of DSBs (equivalent to •2 Gy). More extensive DSBs (>2 Gy eq.) result in phosphatase-mediated ERK dephosphorylation, and thus shutdown of ERK signaling. In contrast, radiation does not result in such dephosphorylation even at very high doses. We propose that phosphatases are inactivated perhaps as a result of reactive oxygen species, which does not occur in response to ‘pure’ DNA damage. Our findings suggest that clinically relevant radiation doses, intended to halt tumor growth and induce cell death, are unable to inhibit tumor pro-survival signaling via ERK dephosphorylation.
doi:10.1016/j.radonc.2011.05.074
PMCID: PMC3189425  PMID: 21726915
ATM; AKT; DNA repair; EGFR; ERK; MAP kinase; phosphatase; ROS
2.  SRSF1 (SRp30a) regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells 
Molecular cancer research : MCR  2011;9(7):889-900.
Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed thirteen possible RNA cis-elements for interaction with SRSF1 with mutagenesis of these RNA cis-elements identifying a strong intronic splicing enhancer located in intron 6 (C9-I6/ISE). SRSF1 specifically interacted with this sequence, which was required for SRSF1 to act as a splicing enhancer of the inclusion of the four exon cassette. To further determine the biological importance of this mechanism, we employed RNA oligonucleotides to redirect caspase 9 pre-mRNA splicing in favor of caspase 9b expression, which resulted in an increase in the IC50 of non-small cell lung cancer (NSCLC) cells to daunorubicin, cisplatinum, and paclitaxel. In contrast, downregulation of caspase 9b induced a decrease in the the IC50 of these chemotherapeutic drugs. Lastly, these studies demonstrated that caspase 9 RNA splicing was a major mechanism for the synergistic effects of combination therapy with daunorubicin and erlotinib. Overall, we have identified a novel intronic splicing enhancer that regulates caspase 9 RNA splicing and specifically interacts with SRSF1. Furthermore, we demonstrate that the alternative splicing of caspase 9 is an important molecular mechanism with therapeutic relevance to NSCLCs.
doi:10.1158/1541-7786.MCR-11-0061
PMCID: PMC3140550  PMID: 21622622
ceramide; non-small cell lung cancer; RNA trans-factor; tumor repressor; oncogene; ASF/SF2; SRp30a; SRSF1; chemotherapy; erlotinib; daunorubicin; cisplatinum; paclitaxel
3.  Alternative splicing of Caspase 9 is modulated by the PI3K/Akt pathway via phosphorylation of SRp30a 
Cancer research  2010;70(22):9185-9196.
Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology. Two splice variants are derived from the CASP9 gene via the inclusion (Casp9a) or exclusion (Casp9b) of a four exon cassette. Here we show that alternative splicing of Casp9 is dysregulated in non-small cell lung cancers (NSCLC) regardless of their pathological classification. Based on these findings we hypothesized that survival pathways activated by oncogenic mutation regulated this mechanism. In contrast to K-RasV12 expression, EGFR overexpression or mutation dramatically lowered the Casp9a/9b splice isoform ratio. Moreover, Casp9b downregulation blocked the ability of EGFR mutations to induce anchorage-independent growth. Furthermore, Casp9b expression blocked inhibition of clonogenic colony formation by erlotinib. Interrogation of oncogenic signaling pathways showed that inhibition of PI3K or Akt dramatically increased the Casp9a/9b ratio in NSCLC cells. Finally, Akt was found to mediate exclusion of the exon 3,4,5,6 cassette of Casp9 via the phosphorylation state of the RNA splicing factor SRp30a via serines 199, 201, 227 and 234. Taken together, our findings demonstrate that oncogenic factors activating the PI3Kinase/Akt pathway can regulate alternative splicing of Casp9 via a coordinated mechanism involving the phosphorylation of SRp30a.
doi:10.1158/0008-5472.CAN-10-1545
PMCID: PMC3059118  PMID: 21045158
SRp30a; alternative splicing; erlotinib; Akt
4.  ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells 
Aging (Albany NY)  2010;2(9):582-596.
We recently demonstrated that human embryonic stem cells (hESCs) utilize homologous recombination repair (HRR) as primary means of double-strand break (DSB) repair. We now show that hESCs also use nonhomologous end joining (NHEJ). NHEJ kinetics were several-fold slower in hESCs and neural progenitors (NPs) than in astrocytes derived from hESCs. ATM and DNA-PKcs inhibitors were ineffective or partially effective, respectively, at inhibiting NHEJ in hESCs, whereas progressively more inhibition was seen in NPs and astrocytes. The lack of any major involvement of DNA-PKcs in NHEJ in hESCs was supported by siRNA-mediated DNA-PKcs knockdown. Expression of a truncated XRCC4 decoy or XRCC4 knock-down reduced NHEJ by more than half suggesting that repair is primarily canonical NHEJ. Poly(ADP-ribose) polymerase (PARP) was dispensable for NHEJ suggesting that repair is largely independent of backup NHEJ. Furthermore, as hESCs differentiated a progressive decrease in the accuracy of NHEJ was observed. Altogether, we conclude that NHEJ in hESCs is largely independent of ATM, DNA-PKcs, and PARP but dependent on XRCC4 with repair fidelity several-fold greater than in astrocytes.
PMCID: PMC2984607  PMID: 20844317
BG01V; DSB repair; KU-55933; KU-57788; KU-59436
5.  Pro-survival AKT and ERK signaling from EGFR and mutant EGFRvIII enhances DNA double-strand break repair in human glioma cells 
Cancer biology & therapy  2009;8(8):730-738.
The epidermal growth factor receptor (EGFR) is frequently dysregulated in malignant glioma that leads to increased resistance to cancer therapy. Upregulation of wild type or expression of mutant EGFR is associated with tumor radioresistance and poor clinical outcome. EGFR variant III (EGFRvIII) is the most common EGFR mutation in malignant glioma. Radioresistance is thought to be, at least in part, the result of a strong cytoprotective response fueled by signaling via AKT and ERK that is heightened by radiation in the clinical dose range. Several groups including ours have shown that this response may modulate DNA repair. Herein, we show that expression of EGFRvIII promoted γ-H2AX foci resolution, a surrogate for double-strand break (DSB) repair, and thus enhanced DNA repair. Conversely, small molecule inhibitors targeting EGFR, MEK, and the expression of dominant-negative EGFR (EGFR-CD533) significantly reduced the resolution of γ-H2AX foci. When homologous recombination repair (HRR) and non-homologous end joining (NHEJ) were specifically examined, we found that EGFRvIII stimulated and CD533 compromised HRR and NHEJ, respectively. Furthermore, NHEJ was blocked by inhibitors of AKT and ERK signaling pathways. Moreover, expression of EGFRvIII and CD533 increased and reduced, respectively, the formation of phospho-DNA-PKcs and -ATM repair foci, and RAD51 foci and expression levels, indicating that DSB repair is regulated at multiple levels. Altogether, signaling from EGFR and EGFRvIII promotes both HRR and NHEJ that is likely a contributing factor towards the radioresistance of malignant gliomas.
PMCID: PMC2863288  PMID: 19252415
CD533; homologous recombination; non-homologous end-joining; I-SceI
6.  In vitro complementation of Tdp1 deficiency indicates a stabilized enzyme-DNA adduct from tyrosyl but not glycolate lesions as a consequence of the SCAN1 mutation 
DNA repair  2009;8(5):654-663.
A homozygous H493R mutation in the active site of tyrosyl-DNA phosphodiesterase (TDP1) has been implicated in hereditary spinocerebellar ataxia with axonal neuropathy (SCAN1), an autosomal recessive neurodegenerative disease. However, it is uncertain how the H493R mutation elicits the specific pathologies of SCAN1. To address this question, and to further elucidate the role of TDP1 in repair of DNA end modifications and general physiology, we generated a Tdp1 knockout mouse and carried out detailed behavioral analyses as well as characterization of repair deficiencies in extracts of embryo fibroblasts from these animals. While Tdp1−/− mice appear phenotypically normal, extracts from Tdp1−/− fibroblasts exhibited deficiencies in processing 3′-phosphotyrosyl single-strand breaks and 3′-phosphoglycolate double-strand breaks, but not 3′-phosphoglycolate single-strand breaks. Supplementing Tdp1−/− extracts with H493R TDP1 partially restored processing of 3′-phosphotyrosyl single-strand breaks, but with evidence of persistent covalent adducts between TDP1 and DNA, consistent with a proposed intermediate-stabilization effect of the SCAN1 mutation. However, H493R TDP1 supplementation had no effect on phosphoglycolate termini on 3′ overhangs of double-strand breaks; these remained completely unprocessed. Altogether, these results suggest that for 3′-phosphoglycolate overhang lesions, the SCAN1 mutation confers loss of function, while for 3′-phosphotyrosyl lesions, the mutation uniquely stabilizes a reaction intermediate.
doi:10.1016/j.dnarep.2008.12.012
PMCID: PMC2844109  PMID: 19211312
TDP1; DNA repair; mouse models; NHEJ; TopoisomeraseI; end modifications

Results 1-6 (6)