PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (34)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
author:("Emdad, lung")
1.  Novel mechanism of MDA-7/IL-24 cancer-specific apoptosis through SARI induction 
Cancer research  2013;74(2):563-574.
Subtraction-hybridization combined with induction of cancer cell terminal differentiation in human melanoma cells identified melanoma differentiation associated gene-7 (mda-7/IL-24) and SARI (Suppressor of AP-1, induced by IFN) that display potent antitumor activity. These genes are not constitutively expressed in cancer cells and forced expression of mda-7/IL-24 (Ad.mda-7) or SARI(Ad.SARI) promotes cancer-specific cell death. Ectopic expression of mda-7/IL-24 induces SARI mRNA and protein in a panel of different cancer cells leading to cell death, without harming corresponding normal cells. Simultaneous inhibition of K-ras downstream extracellular regulated kinase 1/2 (ERK1/2) signaling in pancreatic cancer cells reverses the translational block of MDA-7/IL-24 and induces SARI expression and cell death. Using SARI-antisense-based approaches we demonstrate that SARI expression is necessary for mda-7/IL-24 antitumor effects. Secreted MDA-7/IL-24 protein induces antitumor ‘bystander’ effects by promoting its own expression. Recombinant MDA-7/IL-24 (His-MDA-7) induces SARI expression, supporting the involvement of SARI in the MDA-7/IL-24-driven autocrine loop culminating in antitumor effects. Moreover, His-MDA-7 after binding to its cognate receptors (IL-20R1/IL-20R2 or IL-22R/IL-20R2) induces intracellular signaling by phosphorylation of p38 MAPK leading to transcription of a family of growth arrest and DNA damage inducible (GADD) genes, culminating in apoptosis. Inhibition of p38 MAPK fails to induce SARI following Ad.mda-7 infection. These findings reveal the significance of the mda-7/IL-24-SARI axis in cancer-specific killing, and provide a potential strategy for treating both local and metastatic disease.
doi:10.1158/0008-5472.CAN-13-1062
PMCID: PMC3915776  PMID: 24282278
SARI; MDA-7/IL-24; apoptosis; IL-20/IL-22 receptors
2.  MDA-9/syntenin is a key regulator of glioma pathogenesis 
Neuro-Oncology  2013;16(1):50-61.
Background
The extraordinary invasiveness of human glioblastoma multiforme (GBM) contributes to treatment failure and the grim prognosis of patients diagnosed with this tumor. Consequently, it is imperative to define further the cellular mechanisms that control GBM invasion and identify promising novel therapeutic targets. Melanoma differentiation associated gene–9 (MDA-9/syntenin) is a highly conserved PDZ domain–containing scaffolding protein that promotes invasion and metastasis in vitro and in vivo in human melanoma models. To determine whether MDA-9/syntenin is a relevant target in GBM, we investigated its expression in tumor samples and involvement in GBM invasion and angiogenesis.
Materials
We assessed MDA-9/syntenin levels in available databases, patient tumor samples, and human-derived cell lines. Through gain-of-function and loss-of-function studies, we analyzed changes in invasion, angiogenesis, and signaling in vitro. We used orthotopic xenografts with GBM6 cells to demonstrate the role of MDA-9/syntenin in GBM pathogenesis in vivo.
Results
MDA-9/syntenin expression in high-grade astrocytomas is significantly higher than normal tissue counterparts. Forced overexpression of MDA-9/syntenin enhanced Matrigel invasion, while knockdown inhibited invasion, migration, and anchorage-independent growth in soft agar. Moreover, overexpression of MDA-9/syntenin increased activation of c-Src, p38 mitogen-activated protein kinase, and nuclear factor kappa-B, leading to elevated expression of matrix metalloproteinase 2 and secretion of interleukin-8 with corresponding changes observed upon knockdown. GBM6 cells that stably express small hairpin RNA for MDA-9/syntenin formed smaller tumors and had a less invasive phenotype in vivo.
Conclusions
Our findings indicate that MDA-9/syntenin is a novel and important mediator of invasion in GBM and a key regulator of pathogenesis, and we identify it as a potential target for anti-invasive treatment in human astrocytoma.
doi:10.1093/neuonc/not157
PMCID: PMC3870820  PMID: 24305713
MDA-9/syntenin; GBM; glioma; invasion; intracranial injection
3.  Role of the staphylococcal nuclease and tudor domain containing 1 in oncogenesis (Review) 
International Journal of Oncology  2014;46(2):465-473.
The staphylococcal nuclease and tudor domain containing 1 (SND1) is a multifunctional protein overexpressed in breast, prostate, colorectal and hepatocellular carcinomas and malignant glioma. Molecular studies have revealed the multifaceted activities of SND1 involved in regulating gene expression at transcriptional as well as post-transcriptional levels. Early studies identified SND1 as a transcriptional co-activator. SND1 is also a component of RNA-induced silencing complex (RISC) thus mediating RNAi function, a regulator of mRNA splicing, editing and stability, and plays a role in maintenance of cell viability. Such diverse actions allow the SND1 to modulate a complex array of molecular networks, thereby promoting carcinogenesis. Here, we describe the crucial role of SND1 in cancer development and progression, and highlight SND1 as a potential target for therapeutic intervention.
doi:10.3892/ijo.2014.2766
PMCID: PMC4277250  PMID: 25405367
staphylococcal nuclease and tudor domain containing 1; astrocyte elevated gene-1; cancer; metastasis
4.  Enterovirus 2Apro Targets MDA5 and MAVS in Infected Cells 
Journal of Virology  2014;88(6):3369-3378.
ABSTRACT
RIG-I-like receptors (RLRs) MDA5 and RIG-I are key players in the innate antiviral response. Upon recognition of viral RNA, they interact with MAVS, eventually inducing type I interferon production. The interferon induction pathway is commonly targeted by viruses. How enteroviruses suppress interferon production is incompletely understood. MDA5 has been suggested to undergo caspase- and proteasome-mediated degradation during poliovirus infection. Additionally, MAVS is reported to be cleaved during infection with coxsackievirus B3 (CVB3) by the CVB3 proteinase 3Cpro, whereas MAVS cleavage by enterovirus 71 has been attributed to 2Apro. As yet, a detailed examination of the RLR pathway as a whole during any enterovirus infection is lacking. We performed a comprehensive analysis of crucial factors of the RLR pathway, including MDA5, RIG-I, LGP2, MAVS, TBK1, and IRF3, during infection of CVB3, a human enterovirus B (HEV-B) species member. We show that CVB3 inhibits the RLR pathway upstream of TBK1 activation, as demonstrated by limited phosphorylation of TBK1 and a lack of IRF3 phosphorylation. Furthermore, we show that MDA5, MAVS, and RIG-I all undergo proteolytic degradation in CVB3-infected cells through a caspase- and proteasome-independent manner. We convincingly show that MDA5 and MAVS cleavages are both mediated by CVB3 2Apro, while RIG-I is cleaved by 3Cpro. Moreover, we show that proteinases 2Apro and 3Cpro of poliovirus (HEV-C) and enterovirus 71 (HEV-A) exert the same functions. This study identifies a critical role of 2Apro by cleaving MDA5 and MAVS and shows that enteroviruses use a common strategy to counteract the interferon response in infected cells.
IMPORTANCE Human enteroviruses (HEVs) are important pathogens that cause a variety of diseases in humans, including poliomyelitis, hand, foot, and mouth disease, viral meningitis, cardiomyopathy, and more. Like many other viruses, enteroviruses target the host immune pathways to gain replication advantage. The MDA5/MAVS pathway is responsible for recognizing enterovirus infections in the host cell and leads to expression of type I interferons (IFN-I), crucial antiviral signaling molecules. Here we show that three species of HEVs all employ the viral proteinase 2A (2Apro) to proteolytically target MDA5 and MAVS, leading to an efficient blockade upstream of IFN-I transcription. These observations suggest that MDA5/MAVS antagonization is an evolutionarily conserved and beneficial mechanism of enteroviruses. Understanding the molecular mechanisms of enterovirus immune evasion strategies will help to develop countermeasures to control infections with these viruses in the future.
doi:10.1128/JVI.02712-13
PMCID: PMC3957915  PMID: 24390337
5.  Novel Role of MDA-9/Syntenin in Regulating Urothelial Cell Proliferation by Modulating EGFR Signaling 
Purpose
Urothelial cell carcinoma (UCC) rapidly progresses from superficial to muscle-invasive tumors. The key molecules involved in metastatic progression and its early detection require clarification. The present study defines a seminal role of the metastasis-associated gene MDA-9/Syntenin in UCC progression.
Experimental Design
Expression pattern of MDA-9/Syntenin was examined in 44 primary UCC and the impact of its overexpression and knock down was examined in multiple cells lines and key findings were validated in primary tumors.
Results
Significantly higher (p= 0.002–0.003) expression of MDA-9/Syntenin was observed in 64% (28/44) of primary tumors and an association was evident with stage (p=0.01), grade (p=0.03) and invasion status (p=0.02). MDA-9/Syntenin overexpression in non-tumorigenic HUC-1 cells increased proliferation (p=0.0012), invasion (p=0.0001) and EGFR, AKT, PI3K and c-Src expression. Alteration of Beta-catenin, E-Cadherin, Vimentin, Claudin-1, ZO-1 and TCF4 expression were also observed. MDA-9/Syntenin knock down in 3 UCC cell lines reversed phenotypic and molecular changes observed in the HUC-1 cells and reduced in vivo metastasis. Key molecular changes observed in the cell lines were confirmed in primary tumors. A physical interaction and co-localization of MDA-9/Syntenin and EGFR was evident in UCC cell lines and primary tumors. A logistic regression model analysis revealed a significant correlation between MDA-9/Syntenin:EGFR and MDA-9/Syntenin: AKT expressions with stage (p=0.04, EGFR), (p=0.01, AKT). A correlation between MDA-9/Syntenin: β-catenin co-expression with stage (p=0.03) and invasion (p=0.04) was also evident.
Conclusions
Our findings indicate that MDA-9/Syntenin might provide an attractive target for developing detection, monitoring and therapeutic strategies for managing UCC.
doi:10.1158/1078-0432.CCR-13-0585
PMCID: PMC3872137  PMID: 23873690
Urothelial cancer; MDA-9/Syntenin; invasion; EGFR signaling
6.  Expression patterns of MDA-9/syntenin during development of the mouse embryo 
Journal of molecular histology  2012;44(2):159-166.
MDA-9 (melanoma differentiation associated gene-9)/Syntenin is a PDZ domain-containing adaptor protein involved in multiple diverse cellular processes including organization of protein complexes in the plasma membrane, intracellular trafficking and cell surface targeting, synaptic transmission, and cancer metastasis. In the present study, we analyzed the expression pattern of MDA-9/syntenin during mouse development. MDA-9/syntenin was robustly expressed with tight regulation of its temporal and spatial expression during fetal development in the developing skin, spinal cord, heart, lung and liver, which are regulated by multiple signaling pathways in the process of organogenesis. Recent studies also indicate that MDA-9/syntenin is involved in the signaling pathways crucial during development such as Wnt, Notch and FGF. Taken together, these results suggest that MDA-9/syntenin may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation through modulating multiple signaling pathways as a crucial adaptor protein. Additionally, temporal regulation of MDA-9/syntenin expression may be required during specific stages and in specific tissues during development.
doi:10.1007/s10735-012-9468-1
PMCID: PMC3605205  PMID: 23180153
MDA-9/syntenin; development; mouse embryo; adaptor protein
7.  Staphylococcal nuclease domain containing-1 (SND1) promotes migration and invasion via angiotensin II type 1 receptor (AT1R) and TGFβ signaling 
FEBS Open Bio  2014;4:353-361.
Highlights
•SND1 augments AT1R receptor level by posttranscriptional regulation.•SND1 activates TGFβ signaling which promotes the epithelial–mesenchymal transition.•Migration and invasion by human hepatocellular carcinoma (HCC) cells are augmented by SND1.•A correlation is observed between SND1 and AT1R expression in HCC patients.
Staphylococcal nuclease domain containing-1 (SND1) is overexpressed in human hepatocellular carcinoma (HCC) patients and promotes tumorigenesis by human HCC cells. We now document that SND1 increases angiotensin II type 1 receptor (AT1R) levels by increasing AT1R mRNA stability. This results in activation of ERK, Smad2 and subsequently the TGFβ signaling pathway, promoting epithelial–mesenchymal transition (EMT) and migration and invasion by human HCC cells. A positive correlation was observed between SND1 and AT1R expression levels in human HCC patients. Small molecule inhibitors of SND1, alone or in combination with AT1R blockers, might be an effective therapeutic strategy for late-stage aggressive HCC.
doi:10.1016/j.fob.2014.03.012
PMCID: PMC4050181  PMID: 24918049
ACE, angiotensin-I converting enzyme; ACE-I, ACE inhibitors; AT1R, angiotensin II type 1 receptor; EMT, epithelial–mesenchymal transition; FDR, false discovery rate; HCC, human hepatocellular carcinoma; LP, losartan potassium; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NASH, non-alcoholic steatohepatitis; PAI-1, plasminogen activator inhibitor-1; RISC, RNA-induced silencing complex; SND1, Staphylococcal nuclease domain containing-1; SND1; AT1R; TGFβ; PAI-1; Invasion
8.  Targeting the Bcl-2 Family for Cancer Therapy 
Introduction
Programmed cell death is well-orchestrated process regulated by multiple pro-apoptotic and anti-apoptotic genes, particularly those of the Bcl-2 gene family. These genes are well documented in cancer with aberrant expression being strongly associated with resistance to chemotherapy and radiation.
Areas covered
This review focuses on the resistance induced by the Bcl-2 family of anti-apoptotic proteins and current therapeutic interventions currently in preclinical or clinical trials that target this pathway. Major resistance mechanisms that are regulated by Bcl-2 family proteins and potential strategies to circumvent resistance are also examined. Although antisense and gene therapy strategies are used to nullify Bcl-2 family proteins, recent approaches use small molecule inhibitors and peptides. Structural similarity of the Bcl-2 family of proteins greatly favors development of inhibitors that target the BH3 domain, called BH3 mimetics.
Expert opinion
Strategies to specifically identify and inhibit critical determinants that promote therapy-resistance and tumor progression represent viable approaches for developing effective cancer therapies. From a clinical perspective, pretreatment with novel, potent Bcl-2 inhibitors either alone or in combination with conventional therapies hold significant promise for providing beneficial clinical outcomes. Identifying small molecule inhibitors with broader and higher affinities for inhibiting all of the Bcl-2 pro-survival proteins will facilitate development of superior cancer therapies.
doi:10.1517/14728222.2013.733001
PMCID: PMC3955095  PMID: 23173842
BH3 domain; apoptosis; Mcl-1; radiation resistance; chemotherapy resistance
9.  AEG-1/MTDH/LYRIC: Signaling Pathways, Downstream Genes, Interacting Proteins, and Regulation of Tumor Angiogenesis 
Advances in cancer research  2013;120:75-111.
Astrocyte elevated gene-1 (AEG-1), also known as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), was initially cloned in 2002. AEG-1/MTDH/LYRIC has emerged as an important oncogene that is overexpressed in multiple types of human cancer. Expanded research on AEG-1/MTDH/LYRIC has established a functional role of this molecule in several crucial aspects of tumor progression, including transformation, proliferation, cell survival, evasion of apoptosis, migration and invasion, metastasis, angiogenesis, and chemoresistance. The multifunctional role of AEG-1/MTDH/LYRIC in tumor development and progression is associated with a number of signaling cascades, and recent studies identified several important interacting partners of AEG-1/MTDH/LYRIC in regulating cancer promotion and other biological functions. This review evaluates the current literature on AEG-1/MTDH/LYRIC function relative to signaling changes, interacting partners, and angiogenesis and highlights new perspectives of this molecule, indicating its potential as a significant target for the clinical treatment of various cancers and other diseases.
doi:10.1016/B978-0-12-401676-7.00003-6
PMCID: PMC3928810  PMID: 23889988
10.  MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma 
Cancer research  2012;73(2):844-854.
Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous).
doi:10.1158/0008-5472.CAN-12-1681
PMCID: PMC3548987  PMID: 23233738
mda-9/syntenin; melanoma; angiogenesis; IGFBP-2; HuVECs; CAM assay
11.  Astrocyte elevated gene-1 (AEG-1) promotes hepatocarcinogenesis: novel insights from a mouse model 
Hepatology (Baltimore, Md.)  2012;56(5):1782-1791.
Astrocyte elevated gene-1 (AEG-1) is a key contributor to hepatocellular carcinoma (HCC) development and progression. To enhance our understanding of the role of AEG-1 in hepatocarcinogenesis, a transgenic mouse with hepatocyte-specific expression of AEG-1 (Alb/AEG1) was developed. Treating Alb/AEG-1, but not Wild type (WT) mice, with N-nitrosodiethylamine (DEN), resulted in multinodular HCC with steatotic features and associated modulation of expression of genes regulating invasion, metastasis, angiogenesis and fatty acid synthesis. Hepatocytes isolated from Alb/AEG-1 mice displayed profound resistance to chemotherapeutics and growth factor deprivation with activation of pro-survival signaling pathways. Alb/AEG-1 hepatocytes also exhibited marked resistance towards senescence, which correlated with abrogation of activation of a DNA damage response. Conditioned media (CM) from Alb/AEG-1 hepatocytes induced marked angiogenesis with elevation in several coagulation factors. Among these factors, AEG-1 facilitated association of Factor XII (FXII) mRNA with polysomes resulting in increased translation. siRNA-mediated knockdown of FXII resulted in profound inhibition of AEG-1-induced angiogenesis.
Conclusion
We uncover novel aspects of AEG-1 functions, including induction of steatosis, inhibition of senescence and activation of coagulation pathway to augment aggressive hepatocarcinogenesis. The Alb/AEG-1 mouse provides an appropriate model to scrutinize the molecular mechanism of hepatocarcinogenesis and to evaluate the efficacy of novel therapeutic strategies targeting HCC.
doi:10.1002/hep.25868
PMCID: PMC3449036  PMID: 22689379
Astrocyte elevated gene-1 (AEG-1); transgenic; hepatocellular carcinoma (HCC); senescence; angiogenesis
12.  Identification of Genes Potentially Regulated by Human Polynucleotide Phosphorylase (hPNPaseold-35) Using Melanoma as a Model 
PLoS ONE  2013;8(10):e76284.
Human Polynucleotide Phosphorylase (hPNPaseold-35 or PNPT1) is an evolutionarily conserved 3′→5′ exoribonuclease implicated in the regulation of numerous physiological processes including maintenance of mitochondrial homeostasis, mtRNA import and aging-associated inflammation. From an RNase perspective, little is known about the RNA or miRNA species it targets for degradation or whose expression it regulates; except for c-myc and miR-221. To further elucidate the functional implications of hPNPaseold-35 in cellular physiology, we knocked-down and overexpressed hPNPaseold-35 in human melanoma cells and performed gene expression analyses to identify differentially expressed transcripts. Ingenuity Pathway Analysis indicated that knockdown of hPNPaseold-35 resulted in significant gene expression changes associated with mitochondrial dysfunction and cholesterol biosynthesis; whereas overexpression of hPNPaseold-35 caused global changes in cell-cycle related functions. Additionally, comparative gene expression analyses between our hPNPaseold-35 knockdown and overexpression datasets allowed us to identify 77 potential “direct” and 61 potential “indirect” targets of hPNPaseold-35 which formed correlated networks enriched for cell-cycle and wound healing functional association, respectively. These results provide a comprehensive database of genes responsive to hPNPaseold-35 expression levels; along with the identification new potential candidate genes offering fresh insight into cellular pathways regulated by PNPT1 and which may be used in the future for possible therapeutic intervention in mitochondrial- or inflammation-associated disease phenotypes.
doi:10.1371/journal.pone.0076284
PMCID: PMC3797080  PMID: 24143183
13.  Selected Approaches for Rational Drug Design and High Throughput Screening to Identify Anti-Cancer Molecules 
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specific-promoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
PMCID: PMC3763986  PMID: 22931411
Progression Elevated Gene-3; Sabutoclax; Apogossypol; BI-97C1; Gossypol; AP-1; PEA3; ETV4; E1AF; c-fos; c-jun; Cancer Terminator Virus
14.  Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer 
PLoS ONE  2013;8(4):e61342.
X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.
doi:10.1371/journal.pone.0061342
PMCID: PMC3629226  PMID: 23613836
15.  Oncogene AEG-1 promotes glioma-induced neurodegeneration by increasing glutamate excitotoxicity 
Cancer research  2011;71(20):6514-6523.
Aggressive tumor growth, diffuse tissue invasion and neurodegeneration are hallmarks of malignant glioma. Although glutamate excitotoxicity is considered to play a key role in glioma-induced neurodegeneration, the mechanism(s) controlling this process is poorly understood. AEG-1 is an oncogene overexpressed in multiple types of human cancers including >90% of brain tumors. AEG-1 also promotes gliomagenesis particularly in the context of tumor growth and invasion, two primary characteristics of glioma. In the present study, we investigated the contribution of AEG-1 to glioma-induced neurodegeneration. Pearson correlation coefficient analysis in normal brain tissues and glioma patient samples indicated a strong negative correlation between expression of AEG-1 and a primary glutamate transporter of astrocytes EAAT2. Gain and loss of function studies in normal primary human fetal astrocytes and T98G glioblastoma multiforme cells revealed that AEG-1 repressed EAAT2 expression at a transcriptional level by inducing YY1 activity to inhibit CBP function as a coactivator on the EAAT2 promoter. In addition, AEG-1-mediated EAAT2 repression caused a reduction of glutamate uptake by glial cells, resulting in induction of neuronal cell death. These findings were also confirmed in glioma patient samples demonstrating that AEG-1 expression negatively correlated with NeuN expression. Taken together, our findings suggest that AEG-1 contributes to glioma-induced neurodegeneration, a hallmark of this fatal tumor, through regulation of EAAT2 expression.
doi:10.1158/0008-5472.CAN-11-0782
PMCID: PMC3193553  PMID: 21852380
AEG-1; glioma; EAAT2; glutamate; glioma-induced neurodegeneration
16.  Is there a common upstream link for autophagic and apoptotic cell death in human high-grade gliomas? 
Neuro-Oncology  2011;13(7):725-735.
The prognosis of patients with human high-grade gliomas (HGGs) remains dismal despite major advances in their management, due mainly to the high resistance of these infiltrative tumor cells to programmed cell death (PCD). Most therapeutic strategies for HGGs are aimed to maximize PCD type I, apoptosis or type II, autophagy. These are predominantly distinctive processes, but many studies suggest a cross-talk between the two. A better understanding of the link between PCD types I and II might allow development of more effective therapies for HGGs. In this study, we examined whether there is a common upstream signaling event responsible for both apoptotic and autophagic PCD using 3 chemotherapeutic agents in human HGG cells. Our study shows that each agent caused a significant decrease in cell viability in each of the HGG cell lines tested. The increase rate of apoptosis and autophagy varied among cell lines and chemotherapeutic agents used. Increased expression of cytidine-cytidine-adenosine-adenosine-thymidine (C)/enhancer binding protein (EBP) homologous transcription factor C/EBP homologous protein (CHOP)/growth arrest and DNA damage–inducible gene 153 (GADD153) was documented after use of either pro-autophagic or pro-apoptotic agents. The involvement of CHOP/GADD153 in both type I and type II PCD was confirmed by overexpression and gene-silencing studies. Gene silencing by small-interfering RNA–mediated CHOP/GADD153 resulted in increased cell viability, decreased upregulation of microtubule-associated protein light-chain 3′ type II (LC3II) and cleaved caspase-3, and inhibition of apoptosis and autophagy. Exogenous expression of CHOP/GADD153 triggered apoptosis and autophagy in the absence of other stimuli. The clinical significance of these findings was supported by the evidence that celecoxib, a nonsteroidal anti-inflammatory drug known to induce GADD153-mediated apoptosis, strongly increases both type I and type II PCD in HGG cells when combined with another inducer of GADD153. These data suggest that CHOP/GADD153 should be investigated as a novel targetable signaling step to improve therapies for HGGs.
doi:10.1093/neuonc/nor053
PMCID: PMC3129275  PMID: 21727211
apoptosis; autophagy; CHOP/GADD153; cell viability; gliomas
17.  Increased RNA-Induced Silencing Complex (RISC) Activity Contributes to Hepatocellular Carcinoma 
Hepatology (Baltimore, Md.)  2011;53(5):1538-1548.
There is virtually no effective treatment for advanced hepatocellular carcinoma (HCC) and novel targets need to be identified to develop effective treatment. We recently documented that the oncogene Astrocyte elevated gene-1 (AEG-1) plays a seminal role in hepatocarcinogenesis. Employing yeast two-hybrid assay and co-immunoprecipitation followed by mass spectrometry we identified Staphylococcal nuclease domain containing 1 (SND1), a nuclease in the RNA-induced silencing complex (RISC) facilitating RNAi-mediated gene silencing, as an AEG-1 interacting protein. Co-immunoprecipitation and co-localization studies confirmed that AEG-1 is also a component of RISC and both AEG-1 and SND1 are required for optimum RISC activity facilitating siRNA and miRNA-mediated silencing of luciferase reporter gene. In 109 human HCC samples SND1 was overexpressed in ∼74% cases compared to normal liver. Correspondingly, significantly higher RISC activity was observed in human HCC cells compared to immortal normal hepatocytes. Increased RISC activity, conferred by AEG-1 or SND1, resulted in increased degradation of tumor suppressor mRNAs that are target of oncomiRs. Inhibition of enzymatic activity of SND1 significantly inhibited proliferation of human HCC cells. As a corollary, stable overexpression of SND1 augmented and siRNA-mediated inhibition of SND1 abrogated growth of human HCC cells in vitro and in vivo thus revealing a potential role of SND1 in hepatocarcinogenesis.
Conclusion
We unravel a novel mechanism that overexpression of AEG-1 and SND1 leading to increased RISC activity might contribute to hepatocarcinogenesis. Targeted inhibition of SND1 enzymatic activity might be developed as an effective therapy for HCC.
doi:10.1002/hep.24216
PMCID: PMC3081619  PMID: 21520169
AEG-1; SND1; protein-protein interaction; RNAi; hepatocarcinogenesis
18.  Astrocyte Elevated Gene-1 (AEG-1): a multifunctional regulator of normal and abnormal physiology 
Pharmacology & therapeutics  2011;130(1):1-8.
Since its initial identification and cloning in 2002, Astrocyte Elevated Gene-1 (AEG-1), also known as metadherin (MTDH), 3D3 and LYsine-RIch CEACAM1 co-isolated (LYRIC), has emerged as an important oncogene that is overexpressed in all cancers analyzed so far. Examination of a large cohort of patient samples representing diverse cancer indications has revealed progressive increase in AEG-1 expression with stages and grades of the disease and an inverse relationship between AEG-1 expression level and patient prognosis. AEG-1 functions as a bona fide oncogene by promoting transformation. In addition, it plays a significant role in invasion, metastasis, angiogenesis and chemoresistance, all important hallmarks of an aggressive cancer. AEG-1 is also implicated in diverse physiological and pathological processes, such as development, inflammation, neurodegeneration, migraine and Huntington disease. AEG-1 is a highly basic protein with a transmembrane domain and multiple nuclear localization signals and it is present in the cell membrane, cytoplasm, nucleus, nucleolus and endoplasmic reticulum. In each location, AEG-1 interacts with specific proteins thereby modulating diverse intracellular processes the combination of which contributes to its pleiotrophic properties. The present review provides a snapshot of the current literature along with future perspectives on this unique molecule.
doi:10.1016/j.pharmthera.2011.01.008
PMCID: PMC3043119  PMID: 21256156
Astrocyte elevated gene-1 (AEG-1); Oncogene; Metastasis; Chemoresistance; Angiogenesis; Neurodegeneration
19.  Stemness of the CT-2A Immunocompetent Mouse Brain Tumor Model: Characterization In Vitro 
Journal of Cancer  2012;3:166-174.
Evidence has pointed to brain tumor stem cells (BTSC) as culprits behind human high-grade glioma (hHGG) resistance to standard therapy. Pre-clinical rodent models are the mainstay for testing of new therapeutic strategies. The typical model involves the intracranial injection of human glioma cells into immunocompromised hosts, hindering the evaluation of tumor-host responses and resulting in non-infiltrative tumors. The CT-2A model is an immunocompetent mouse model with potential to overcome these disadvantages. In this study, we confirmed the highly infiltrative nature of intracranial CT-2A tumors and optimized reproducible injection parameters. We then generated neurospheres and established, for the first time, the stemness of this model. CT-2A expression of the BTSC marker, CD133, increased from 2% in monolayer cells to 31% in fully-formed neurospheres. Investigation of three stem cell markers (Oct4, Nanog and Nestin) revealed a distinct stemness signature with monolayer cells expressing Oct4 and Nestin (no Nanog), and neurospheres expressing all three. Additionally, CT-2A cells were more proliferative and invasive than U87 cells, while CT-2A neurospheres were significantly more proliferative and invasive than either monolayer cells in vitro. Taken together, our results show that this model is a valuable tool for pre-clinical testing of novel therapeutics against hHGG and also affords the opportunity for investigation of BTSC in an immunocompetent setting.
doi:10.7150/jca.4149
PMCID: PMC3328782  PMID: 22514559
immunocompetent mouse model; glioma; stem cells
20.  The development of MDA-7/IL-24 as a cancer therapeutic 
Pharmacology & therapeutics  2010;128(2):375-384.
The cytokine melanoma differentiation associated gene 7 (mda-7) was identified by subtractive hybridization as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, was classified as a member of the interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and rapid cell death. In addition, MDA-7/IL-24 has been noted to radiosensitize tumor cells which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress and suppress protein translation. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, strongly arguing that MDA-7/IL-24 could have significant therapeutic value. This review describes what is presently known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1016/j.pharmthera.2010.08.001
PMCID: PMC2947573  PMID: 20732354
MDA-7; IL-24; Apoptosis; Autophagy; Ceramide; ROS; Ca2+; Clinical trial; Signal transduction; PERK; ER stress; MCL-1
21.  Caspase-, cathepsin-, and PERK-dependent regulation of MDA-7/IL-24-induced cell killing in primary human glioma cells 
Molecular cancer therapeutics  2008;7(2):297-313.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on defining the mechanism(s) by which a GST-MDA-7 fusion protein inhibits cell survival of primary human glioma cells in vitro. GST-MDA-7 killed glioma cells with diverse genetic characteristics that correlated with inactivation of ERK1/2 and activation of JNK1-3. Activation of JNK1-3 was dependent on protein kinase R–like endoplasmic reticulum kinase (PERK), and GST-MDA-7 lethality was suppressed in PERK−/− cells. JNK1-3 signaling activated BAX, whereas inhibition of JNK1-3, deletion of BAX, or expression of dominant-negative caspase-9 suppressed lethality. GST-MDA-7 also promoted a PERK-, JNK-, and cathepsin B–dependent cleavage of BID; loss of BID function promoted survival. GST-MDA-7 suppressed BAD and BIM phosphorylation and heat shock protein 70 (HSP70) expression. GST-MDA-7 caused PERK-dependent vacuolization of LC3-expressing endosomes whose formation was suppressed by incubation with 3-methylade-nine, expression of HSP70 or BiP/GRP78, or knockdown of ATG5 or Beclin-1 expression but not by inhibition of the JNK1-3 pathway. Knockdown of ATG5 or Beclin-1 expression or overexpression of HSP70 reduced GST-MDA-7 lethality. Our data show that GST-MDA-7 induces an endoplasmic reticulum stress response that is causal in the activation of multiple proapoptotic pathways, which converge on the mitochondrion and highlight the complexity of signaling pathways altered by mda-7/IL-24 in glioma cells that ultimately culminate in decreased tumor cell survival.
doi:10.1158/1535-7163.MCT-07-2166
PMCID: PMC3204355  PMID: 18281515
22.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
23.  Astrocyte Elevated Gene-1 (AEG-1): a novel target for human glioma therapy 
Molecular cancer therapeutics  2010;9(1):79-88.
Malignant gliomas including glioblastoma multiforme (GBM) and anaplastic astrocytomas are the most common primary brain tumors. Despite multimodal treatment including surgery, chemotherapy and radiation, median survival for patients with GBMs is only 12–15 months. Identifying molecules critical for glioma progression is crucial for devising effective targeted therapy. In the present study, we investigated the potential contribution of Astrocyte Elevated Gene-1 (AEG-1) in gliomagenesis and explored the possibility of AEG-1 as a therapeutic target for malignant glioma. We analyzed the expression levels of AEG-1 in 9 normal brain tissues and 98 brain tumor patient samples by Western blot analysis and immunohistochemistry. AEG-1 expression was significantly elevated in > 90% of diverse human brain tumor samples including GBMs and astrocytic tumors, and also in human glioma cell lines as compared to normal brain tissues and normal astrocytes. Knockdown of AEG-1 by siRNA inhibited cell viability, cloning efficiency, invasive ability of U87 human glioma cells and 9L rat gliosarcoma cells. We also found that matrix metalloproteases (MMP-2 and MMP-9) are involved in AEG-1-mediated invasion of glioma cells. In an orthotopic nude mouse brain tumor model using primary human GBM12 tumor cells, AEG-1 siRNA significantly suppressed glioma cell growth in vivo. Taken together these provocative results indicate that AEG-1 may play a crucial role in the pathogenesis of glioma and that AEG-1 could represent a viable potential target for malignant glioma therapy.
doi:10.1158/1535-7163.MCT-09-0752
PMCID: PMC3165052  PMID: 20053777
AEG-1; brain tumor; glioma; invasion; angiogenesis
24.  MDA-7/IL-24 as a cancer therapeutic: from bench to bedside 
Anti-cancer drugs  2010;21(8):725-731.
The novel cytokine melanoma differentiation associated gene-7 (mda-7) was identified by subtractive hybridization in the mid-1990s as a protein whose expression increased during the induction of terminal differentiation, and that was either not expressed or was present at low levels in tumor cells compared to non-transformed cells. Based on conserved structure, chromosomal location and cytokine-like properties, MDA-7, has now been classified as a member of the expanding interleukin (IL)-10 gene family and designated as MDA-7/IL-24. Multiple studies have demonstrated that expression of MDA-7/IL-24 in a wide variety of tumor cell types, but not in corresponding equivalent non-transformed cells, causes their growth arrest and ultimately cell death. In addition, MDA-7/IL-24 has been noted to be a radiosensitizing cytokine, which in part is due to the generation of reactive oxygen species (ROS) and ceramide that cause endoplasmic reticulum stress. Phase I clinical trial data has shown that a recombinant adenovirus expressing MDA-7/IL-24 (Ad.mda-7 (INGN-241)) was safe and had measurable tumoricidal effects in over 40% of patients, which strongly argues that MDA-7/IL-24 may have significant therapeutic value. This review describes what is known about the impact of MDA-7/IL-24 on tumor cell biology and its potential therapeutic applications.
doi:10.1097/CAD.0b013e32833cfbe1
PMCID: PMC2915543  PMID: 20613485
MDA-7: melanoma differentiation associated gene 7
25.  Embryonic stem cell (ESC)-mediated transgene delivery induces growth suppression, apoptosis, radiosensitization, and overcomes temozolomide resistance in malignant gliomas 
Cancer gene therapy  2010;17(9):664-674.
High-grade gliomas are among the most lethal of all cancers. Despite considerable advances in multi-modality treatment, including surgery, radiotherapy, and chemotherapy, the overall prognosis for patients with this disease remains dismal. Currently available treatments necessitate the development of more effective tumor-selective therapies. The use of gene therapy for malignant gliomas is promising as it allows in situ delivery and selectively targets brain tumor cells while sparing the adjacent normal brain tissue. Viral vectors to deliver pro-apoptotic genes to malignant glioma cells have been investigated. Although tangible results on patients’ survival remains to be further documented, significant advances in therapeutic gene transfer strategies have been made. Recently, cell-based gene delivery has been sought as an alternative method. In this paper, we report the pro-apoptotic effects of embryonic stem cell (ESC)-mediated mda-7/IL-24 delivery to malignant glioma cell lines. Our data show that these are similar to those observed using a viral vector. Additionally, acknowledging the heterogeneity of malignant glioma cells and their signaling pathways, we assessed the effects of conventional treatment for high grade gliomas, IR and TMZ, when combined with ESC-mediated transgene delivery. This combination resulted in synergistic effects on tumor cell death. The mechanisms involved in this beneficial effect included activation of both apoptosis and autophagy. Our in vitro data supports the concept that ESC-mediated gene delivery might offer therapeutic advantages over standard approaches to malignant gliomas. Our results corroborate the theory that combined treatments exploiting different signaling pathways are needed to succeed in the treatment of malignant gliomas.
doi:10.1038/cgt.2010.31
PMCID: PMC2923667  PMID: 20523363
Embryonic stem cell; apoptosis; autophagy; malignant gliomas; gene delivery

Results 1-25 (34)