PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (71)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
1.  A novel mechanism by which histone deacetylase inhibitors facilitate topoisomerase IIα degradation in hepatocellular carcinoma cells 
Hepatology (Baltimore, Md.)  2011;53(1):148-159.
Histone deacetylase (HDAC) inhibitors exhibit a unique ability to degrade topoisomerase (topo)IIα in hepatocellular carcinoma (HCC) cells, which contrasts with the effect of topoII-targeted drugs on topoIIβ degradation. This selective degradation might foster novel strategies for HCC treatment in light of the correlation of topoIIα overexpression with the aggressive tumor phenotype and chemoresistance. Here, we report a novel pathway by which HDAC inhibitors mediate topoIIα proteolysis in HCC cells. Our data indicate that HDAC inhibitors transcriptionally activated casein kinase (CK)2α expression through increased association of acetylated histone H3 with the CK2α gene promoter. In turn, CK2 facilitated the binding of topoIIα to COP9 signalosome subunit (Csn)5 via topoIIα phosphorylation. Furthermore, we identified Fbw7, a Csn5-interacting F-box protein, as the E3 ligase that targeted topoIIα for degradation. Moreover, siRNA-mediated knockdown of CK2α, Csn5, or Fbw7 reversed HDAC inhibitor-induced topoIIα degradation. Mutational analysis indicates that the 1361SPKLSNKE1368 motif plays a crucial role in regulating topoIIα protein stability. This motif contains the consensus recognition sites for CK2 (SXXE), glycogen synthase kinase (GSK)3β (SXXXS), and Fbw7 (SPXXS). This study also reports the novel finding that topoIIα may be a target of GSK3β phosphorylation. Evidence suggests that CK2 serves as a priming kinase, through phosphorylation at Ser1365, for GSK3β-mediated phosphorylation at Ser1361. This double phosphorylation facilitated the recruitment of Fbw7 to the phospho-degron 1361pSPKLpS1365 of topoIIα, leading to its ubiquitin-dependent degradation.
Conclusion
This study shows a novel pathway by which HDAC inhibitors facilitate the selective degradation of topoIIα, which underlies the complexity of the functional role of HDAC in regulating tumorigenesis and aggressive phenotype in HCC cells.
doi:10.1002/hep.23964
PMCID: PMC3058595  PMID: 21254166
Topoisomerase II; histone deacetylase inhibitor; proteasomal degradation; casein kinase 2; Fbw7
2.  AMPK as a Potential Anticancer Target – Friend or Foe? 
Current pharmaceutical design  2014;20(15):2607-2618.
Adenosine monophosphate-activated protein kinase (AMPK) is a key player in maintaining energy homeostasis in response to metabolic stress. Beyond diabetes and metabolic syndrome, there is a growing interest in the therapeutic exploitation of the AMPK pathway in cancer treatment in light of its unique ability to regulate cancer cell proliferation through the reprogramming of cell metabolism. Although many studies support the tumor-suppressive role of AMPK, emerging evidence suggests that the metabolic checkpoint function of AMPK might be overridden by stress or oncogenic signals so that tumor cells use AMPK activation as a survival strategy to gain growth advantage. These findings underscore the complexity in the cellular function of AMPK in maintaining energy homeostasis under physiological versus pathological conditions. Thus, this review aims to provide an overview of recent findings on the functional interplay of AMPK with different cell metabolic and signaling effectors, particularly histone deacetylases, in mediating downstream tumor suppressive or promoting mechanisms in different cell systems. Although AMPK activation inhibits tumor growth by targeting multiple signaling pathways relevant to tumorigenesis, under certain cellular contexts or certain stages of tumor development, AMPK might act as a protective response to metabolic stresses, such as nutrient deprivation, low oxygen, and low pH, or as a downstream effectors of oncogenic proteins, including androgen receptor, hypoxia-inducible factor-1α, c-Src, and MYC. Thus, investigations to define at which stage(s) of tumorigenesis and cancer progression or for which genetic aberrations AMPK inhibition might represent a more relevant strategy than AMPK activation for cancer treatment are clearly warranted.
PMCID: PMC4264967  PMID: 23859619
AMPK; metabolic homeostasis; cancer therapy; LKB1; mTORC1; HDAC; Foxo3a; HIF-1α
3.  The novel histone deacetylase inhibitor, AR-42, inhibits gp130/Stat3 pathway and induces apoptosis and cell cycle arrest in multiple myeloma cells 
Multiple myeloma (MM) remains incurable with current therapy, indicating the need for continued development of novel therapeutic agents. We evaluated the activity of a novel phenylbutyrate-derived histone deacetylase inhibitor, AR-42, in primary human myeloma cells and cell lines. AR-42 was cytotoxic to MM cells at a mean LC50 of 0.18 ± 0.06 μmol/l at 48 hr and induced apoptosis with cleavage of caspases 8, 9 and 3, with cell death largely prevented by caspase inhibition. AR-42 downregulated the expression of gp130 and inhibited activation of STAT3, with minimal effects on the PI3K/Akt and MAPK pathways, indicating a predominant effect on the gp130/STAT-3 pathway. AR-42 also inhibited interleukin (IL)-6-induced STAT3 activation, which could not be overcome by exogenous IL-6. AR-42 also downregulated the expression of STAT3-regulated targets, including Bcl-xL and cyclin D1. Overexpression of Bcl-xL by a lentivirus construct partly protected against cell death induced by AR-42. The cyclin dependent kinase inhibitors, p16 and p21, were also significantly induced by AR-42, which together with a decrease in cyclin D1, resulted in G1 and G2 cell cycle arrest. In conclusion, AR-42 has potent cytotoxicity against MM cells mainly through gp130/STAT-3 pathway. The results provide rationale for clinical investigation of AR-42 in MM.
doi:10.1002/ijc.25660
PMCID: PMC4201584  PMID: 20824695
multiple myeloma; apoptosis; cell cycle
4.  Novel Pharmacologic Targeting of Tight Junctions and Focal Adhesions in Prostate Cancer Cells 
PLoS ONE  2014;9(1):e86238.
Cancer cell resistance to anoikis driven by aberrant signaling sustained by the tumor microenvironment confers high invasive potential and therapeutic resistance. We recently generated a novel lead quinazoline-based Doxazosin® derivative, DZ-50, which impairs tumor growth and metastasis via anoikis. Genome-wide analysis in the human prostate cancer cell line DU-145 identified primary downregulated targets of DZ-50, including genes involved in focal adhesion integrity (fibronectin, integrin-α6 and talin), tight junction formation (claudin-11) as well as insulin growth factor binding protein 3 (IGFBP-3) and the angiogenesis modulator thrombospondin 1 (TSP-1). Confocal microscopy demonstrated structural disruption of both focal adhesions and tight junctions by the downregulation of these gene targets, resulting in decreased cell survival, migration and adhesion to extracellular matrix (ECM) components in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. Stabilization of cell-ECM interactions by overexpression of talin-1 and/or exposing cells to a fibronectin-rich environment mitigated the effect of DZ-50. Loss of expression of the intracellular focal adhesion signaling effectors talin-1 and integrin linked kinase (ILK) sensitized human prostate cancer to anoikis. Our findings suggest that DZ-50 exerts its antitumor effect by targeting the key functional intercellular interactions, focal adhesions and tight junctions, supporting the therapeutic significance of this agent for the treatment of advanced prostate cancer.
doi:10.1371/journal.pone.0086238
PMCID: PMC3908921  PMID: 24497940
5.  Activation of Silenced Tumor Suppressor Genes in Prostate Cancer Cells by a Novel Energy Restriction-Mimetic Agent 
The Prostate  2012;72(16):10.1002/pros.22530.
BACKGROUND
Targeting tumor metabolism by energy restriction-mimetic agents (ERMAs) has emerged as a strategy for cancer therapy/prevention. Evidence suggests a mechanistic link between ERMA-mediated antitumor effects and epigenetic gene regulation.
METHODS
Microarray analysis showed that a novel thiazolidinedione-derived ERMA, CG-12, and glucose deprivation could suppress DNA methyltransferase (DNMT)1 expression and reactivate DNA methylation-silenced tumor suppressor genes in LNCaP prostate cancer cells. Thus, we investigated the effects of a potent CG-12 derivative, CG-5, vis-à-vis 2-deoxyglucose, glucose deprivation and/or 5-aza-deoxycytidine, on DNMT isoform expression (Western blotting, RT-PCR), DNMT1 transcriptional activation (luciferase reporter assay), and expression of genes frequently hypermethylated in prostate cancer (quantitative real-time PCR). Promoter methylation was assessed by pyrosequencing analysis. SiRNA-mediated knockdown and ectopic expression of DNMT1 were used to validate DNMT1 as a target of CG-5.
RESULTS
CG-5 and glucose deprivation upregulated the expression of DNA methylation-silenced tumor suppressor genes, including GADD45a, GADD45b, IGFBP3, LAMB3, BASP1, GPX3, and GSTP1, but also downregulated methylated tumor/invasion-promoting genes, including CD44, S100A4, and TACSTD2. In contrast, 5-aza-deoxycytidine induced global reactivation of these genes. CG-5 mediated these epigenetic effects by transcriptional repression of DNMT1, which was associated with reduced expression of Sp1 and E2F1. SiRNA-mediated knockdown and ectopic expression of DNMT1 corroborated DNMT1's role in the modulation of gene expression by CG-5. Pyrosequencing revealed differential effects of CG-5 versus 5-aza-deoxycytidine on promoter methylation in these genes.
CONCLUSIONS
These findings reveal a previously uncharacterized epigenetic effect of ERMAs on DNA methylation-silenced tumor suppressor genes, which may foster novel strategies for prostate cancer therapy.
doi:10.1002/pros.22530
PMCID: PMC3867924  PMID: 22539223
energy restriction-mimetic agent; prostate cancer; energy restriction; DNA methyltransferases; epigenetics
6.  Suppression of Prostate Epithelial Proliferation and Intraprostatic Progrowth Signaling in Transgenic Mice by a New Energy Restriction-Mimetic Agent 
Cancer prevention research (Philadelphia, Pa.)  2012;6(3):10.1158/1940-6207.CAPR-12-0057.
Cells undergoing malignant transformation often exhibit a shift in cellular metabolism from oxidative phosphorylation to glycolysis. This glycolytic shift, called the Warburg effect, provides a mechanistic basis for targeting glycolysis to suppress carcinogenesis through the use of dietary caloric restriction and energy restriction-mimetic agents (ERMA). We recently reported the development of a novel class of ERMAs that exhibits high potency in eliciting starvation-associated cellular responses and epigenetic changes in cancer cells though glucose uptake inhibition. The lead ERMA in this class, OSU-CG5, decreases the production of ATP and NADH in LNCaP prostate cancer cells. In this study, we examined the effect of OSU-CG5 on the severity of preneoplastic lesions in male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice. Daily oral treatment with OSU-CG5 at 100 mg/kg from 6 to 10 weeks of age resulted in a statistically significant decrease in the weight of urogenital tract and microdissected dorsal, lateral, and anterior prostatic lobes relative to vehicle controls. The suppressive effect of OSU-CG5 was evidenced by marked decreases in Ki67 immunostaining and proliferating cell nuclear antigen (PCNA) expression in the prostate. OSU-CG5 treatment was not associated with evidence of systemic toxicity. Microarray analysis indicated a central role for Akt, and Western blot analysis showed reduced phosphorylation and/or expression levels of Akt, Src, androgen receptor, and insulin-like growth factor-1 receptor in prostate lobes. These findings support further investigation of OSU-CG5 as a potential chemopreventive agent.
doi:10.1158/1940-6207.CAPR-12-0057
PMCID: PMC3835199  PMID: 23275006
7.  Phase I Trial of Lenalidomide and CCI-779 in Patients With Relapsed Multiple Myeloma: Evidence for Lenalidomide–CCI-779 Interaction via P-Glycoprotein  
Journal of Clinical Oncology  2011;29(25):3427-3434.
Purpose
Multiple myeloma (MM) is an incurable plasma-cell neoplasm for which most treatments involve a therapeutic agent combined with dexamethasone. The preclinical combination of lenalidomide with the mTOR inhibitor CCI-779 has displayed synergy in vitro and represents a novel combination in MM.
Patients and Methods
A phase I clinical trial was initiated for patients with relapsed myeloma with administration of oral lenalidomide on days 1 to 21 and CCI-779 intravenously once per week during a 28-day cycle. Pharmacokinetic data for both agents were obtained, and in vitro transport and uptake studies were conducted to evaluate potential drug-drug interactions.
Results
Twenty-one patients were treated with 15 to 25 mg lenalidomide and 15 to 20 mg CCI-779. The maximum-tolerated dose (MTD) was determined to be 25 mg lenalidomide with 15 mg CCI-779. Pharmacokinetic analysis indicated increased doses of CCI-779 resulted in statistically significant changes in clearance, maximum concentrations, and areas under the concentration-time curves, with constant doses of lenalidomide. Similar and significant changes for CCI-779 pharmacokinetics were also observed with increased lenalidomide doses. Detailed mechanistic interrogation of this pharmacokinetic interaction demonstrated that lenalidomide was an ABCB1 (P-glycoprotein [P-gp]) substrate.
Conclusion
The MTD of this combination regimen was 25 mg lenalidomide with 15 mg CCI-779, with toxicities of fatigue, neutropenia, and electrolyte wasting. Pharmacokinetic and clinical interactions between lenalidomide and CCI-779 seemed to occur, with in vitro data indicating lenalidomide was an ABCB1 (P-gp) substrate. To our knowledge, this is the first report of a clinically significant P-gp–based drug-drug interaction with lenalidomide.
doi:10.1200/JCO.2010.32.4962
PMCID: PMC3164245  PMID: 21825263
8.  Antitumor Effects of OSU-2S, a Non-immunosuppressive Analogue of FTY720, in Hepatocellular Carcinoma 
Hepatology (Baltimore, Md.)  2011;53(6):1943-1958.
Accumulating evidence suggests the therapeutic potential of the immunosuppressive agent FTY720 (fingolimod) in hepatocellular carcinoma (HCC). Based on our previous finding that FTY720 mediates apoptosis in HCC cells by activating reactive oxygen species (ROS)-protein kinase (PK)Cδ signaling independent of effects on sphingosine-1-phosphate (S1P) receptors, we embarked on the pharmacological exploitation of FTY720 to develop a non-immunosuppressive analogue with antitumor activity. This effort led to the development of OSU-2S, which exhibits higher potency than FTY720 in suppressing HCC cell growth through PKCδ activation. In contrast to FTY720, OSU-2S was not phosphorylated by sphingosine kinase (SphK)2 in vitro, and did not cause S1P1 receptor internalization in HCC cells or T lymphocyte homing in immunocompetent mice. Though devoid of S1P1 receptor activity, OSU-2S exhibited higher in vitro antiproliferative efficacy relative to FTY720 against HCC cells without cytotoxicity in normal hepatocytes. Several lines of pharmacological and molecular genetic evidence indicate that ROS-PKCδ-caspase-3 signaling underlies OSU-2S-mediated antitumor effects, and that differences in the antitumor activity between FTY720 and OSU-2S were attributable to SphK2-mediated phosphorylation of FTY720, which represents a metabolic inactivation of its antitumor activity. Finally, OSU-2S exhibited high in vivo potency in suppressing xenograft tumor growth in both ectopic and orthotopic models without overt toxicity. Conclusion: Using the molecular platform of FTY720, we developed OSU-2S, a novel PKCδ-targeted antitumor agent, which is devoid of S1P1 receptor activity and is highly effective in suppressing HCC tumor growth in vivo. These findings suggest that OSU-2S has clinical value in therapeutic strategies for HCC and warrants continued investigation in this regard.
doi:10.1002/hep.24293
PMCID: PMC3103615  PMID: 21391227
hepatocellular carcinoma; FTY720; OSU-2S; sphingosine 1-phosphate receptor; protein kinase Cδ
9.  Effects of Histone Deacetylase Inhibitors on Modulating H3K4 Methylation Marks – A Novel Cross-Talk Mechanism between Histone-Modifying Enzymes 
A recent study reports that histone deacetylase (HDAC) inhibitors, AR42 and MS- 275, upregulated H3K4 methylation marks in prostate cancer cells, leading to transcriptional activation of genes including those associated with roles in tumor suppression and cell differentiation (1). Evidence suggests that the crosstalk between histone deacetylation and histone H3K4 methylation is attributable to the ability of these HDAC inhibitors to repress the JARID1 family of histone H3 lysine 4 demethylases (H3K4DMs), including RBP2, PLU-1, SMCX, and LSD1, through the downregulation of Sp1 expression. This demonstrates the complexity of the functional roles of HDACs in the regulation of histone modifications as well as the activation of epigenetically silenced gene expression. Equally important is the ability of HDAC inhibitors to transcriptionally suppress H3K4DM gene expression which has therapeutic implications, in that several H3K4DMs such as LSD1 and PLU-1 have been implicated in the pathogenesis of many types of malignancies.
PMCID: PMC3315589  PMID: 22468166
Histone deacetylase; H3K4 methylation; H3K4 demethylases; Histone codes; Histone deacetylase inhibitors; AR42, MS-275
10.  A Rationally Designed Histone Deacetylase Inhibitor with Distinct Antitumor Activity against Ovarian Cancer12 
Neoplasia (New York, N.Y.)  2009;11(6):552-563.
Histone deacetylase inhibitors (HDACIs) are a class of antineoplastic agents previously demonstrating preclinical chemosensitizing activity against drug-resistant cancer cells and mouse xenografts. However, whereas clinical studies have shown efficacy against human hematologic malignancies, solid tumor trials have proved disappointing. We previously developed a novel HDACI, “OSU-HDAC42,” and herein examine its activity against ovarian cancer cell lines and xenografts. OSU-HDAC42, (i) unlike most HDACIs, elicited a more than five-fold increase in G2-phase cells, at 2.5 µM, with G2 arrest followed by apoptosis; (ii) at 1.0 µM, completely repressed messenger RNA expression of the cell cycle progression gene cdc2; (iii) at low doses (0.25–1.0 µM for 24 hours), induced tumor cell epithelial differentiation, as evidenced by morphology changes and a more than five-fold up-regulation of epithelium-specific cytokeratins; (iv) potently abrogated the growth of numerous ovarian cancer cells, with IC50 values of 0.5 to 1.0 µM, whereas also remaining eight-fold less toxic (IC50 of 8.6 µM) to normal ovarian surface epithelial cells; and (v) chemosensitizated platinum-resistant mouse xenografts to cisplatin. Compared with the clinically approved HDACI suberoylanilide hydroxamic acid (vorinostat), 1.0 µM OSU-HDAC42 was more biochemically potent (i.e., enzyme-inhibitory), as suggested by greater gene up-regulation and acetylation of both histone and nonhistone proteins. In p53-dysfunctional cells, however, OSU-HDAC42 was two- to eight-fold less inductive of p53-regulated genes, whereas also having a two-fold higher IC50 than p53-functional cells, demonstrating some interaction with p53 tumor-suppressive cascades. These findings establish OSU-HDAC42 as a promising therapeutic agent for drug-resistant ovarian cancer and justify its further investigation.
PMCID: PMC2685444  PMID: 19484144
11.  Downregulation of survivin expression and concomitant induction of apoptosis by celecoxib and its non-cyclooxygenase-2-inhibitory analog, dimethyl-celecoxib (DMC), in tumor cells in vitro and in vivo 
Molecular Cancer  2006;5:19.
Background
2,5-Dimethyl-celecoxib (DMC) is a close structural analog of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib (Celebrex®) that lacks COX-2-inhibitory function. However, despite its inability to block COX-2 activity, DMC is able to potently mimic the anti-tumor effects of celecoxib in vitro and in vivo, indicating that both of these drugs are able to involve targets other than COX-2 to exert their recognized cytotoxic effects. However, the molecular components that are involved in mediating these drugs' apoptosis-stimulatory consequences are incompletely understood.
Results
We present evidence that celecoxib and DMC are able to down-regulate the expression of survivin, an anti-apoptotic protein that is highly expressed in tumor cells and known to confer resistance of such cells to anti-cancer treatments. Suppression of survivin is specific to these two drugs, as other coxibs (valdecoxib, rofecoxib) or traditional NSAIDs (flurbiprofen, indomethacin, sulindac) do not affect survivin expression at similar concentrations. The extent of survivin down-regulation by celecoxib and DMC in different tumor cell lines is somewhat variable, but closely correlates with the degree of drug-induced growth inhibition and apoptosis. When combined with irinotecan, a widely used anticancer drug, celecoxib and DMC greatly enhance the cytotoxic effects of this drug, in keeping with a model that suppression of survivin may be beneficial to sensitize cancer cells to chemotherapy. Remarkably, these effects are not restricted to in vitro conditions, but also take place in tumors from drug-treated animals, where both drugs similarly repress survivin, induce apoptosis, and inhibit tumor growth in vivo.
Conclusion
In consideration of survivin's recognized role as a custodian of tumor cell survival, our results suggest that celecoxib and DMC might exert their cytotoxic anti-tumor effects at least in part via the down-regulation of survivin – in a manner that does not require the inhibition of cyclooxygenase-2. Because inhibition of COX-2 appears to be negligible, it might be worthwhile to further evaluate DMC's potential as a non-coxib alternative to celecoxib for anti-cancer purposes.
doi:10.1186/1476-4598-5-19
PMCID: PMC1479836  PMID: 16707021
12.  Higher Doses of Lenalidomide Are Associated With Unacceptable Toxicity Including Life-Threatening Tumor Flare in Patients With Chronic Lymphocytic Leukemia 
Purpose
Lenalidomide is a novel therapeutic agent with uncertain mechanism of action that is clinically active in myelodysplastic syndrome (MDS) and multiple myeloma (MM). Application of high (MM) and low (MDS) doses of lenalidomide has been reported to have clinical activity in CLL. Herein, we highlight life-threatening tumor flare when higher doses of lenalidomide are administered to patients with CLL and provide a potential mechanism for its occurrence.
Patients and Methods
Four patients with relapsed CLL were treated with lenalidomide (25 mg/d for 21 days of a 28-day cycle). Serious adverse events including tumor flare and tumor lysis are summarized. In vitro studies examining drug-induced apoptosis and activation of CLL cells were also performed.
Results
Four consecutive patients were treated with lenalidomide; all had serious adverse events. Tumor flare was observed in three patients and was characterized by dramatic and painful lymph node enlargement resulting in hospitalization of two patients, with one fatal outcome. Another patient developed sepsis and renal failure. In vitro studies demonstrated lenalidomide-induced B-cell activation (upregulation of CD40 and CD86) corresponding to degree of tumor flare, possibly explaining the tumor flare observation.
Conclusion
Lenalidomide administered at 25 mg/d in relapsed CLL is associated with unacceptable toxicity; the rapid onset and adverse clinical effects of tumor flare represent a significant limitation of lenalidomide use in CLL at this dose. Drug-associated B-cell activation may contribute to this adverse event. Future studies with lenalidomide in CLL should focus on understanding this toxicity, investigating patients at risk, and investigating alternative safer dosing schedules.
doi:10.1200/JCO.2007.13.9709
PMCID: PMC4312490  PMID: 18427150
13.  Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells 
Despite recent advances in the clinical evaluation of various poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer (TNBC) patients, data defining potential anti-tumor mechanisms beyond PARP inhibition for these agents are lacking. To address this issue, we investigated the effects of four different PARP inhibitors (AG-014699, AZD-2281, ABT-888, and BSI-201) in three genetically distinct TNBC cell lines (MDA-MB-468, MDA-MB-231, and Cal-51). Assays of cell viability and colony formation and flow cytometric analysis were used to determine effects on cell growth and cell cycle progression. PARP-dependent and -independent signaling mechanisms of each PARP inhibitor were investigated by western blotting and shRNA approaches. Potential synergistic interactions between PARP inhibitors and cisplatin in suppressing TNBC cell viability were assessed. These PARP inhibitors exhibited differential anti-tumor activities, with the relative potencies of AG-014699 > AZD-2281 > ABT-888 > BSI-201. The higher potencies of AG-014699 and AZD-2281 were associated with their effects on G2/M arrest and DNA damage as manifested by γ-H2AX formation and, for AG-014699, its unique ability to suppress Stat3 phosphorylation. Abilities of individual PARP inhibitors to sensitize TNBC cells to cisplatin varied to a great extent in a cell context- and cell line-specific manner. Differential activation of signaling pathways suggests that the PARP inhibitors currently in clinical trials have different anti-tumor mechanisms beyond PARP inhibition and these PARP-independent mechanisms warrant further investigation.
doi:10.1007/s10549-012-2106-5
PMCID: PMC4297209  PMID: 22678161
Poly(ADP-ribose) polymerase; PARP inhibitors; Triple-negative breast cancer
14.  Synergistic Interaction between the HDAC Inhibitor, MPT0E028, and Sorafenib in Liver Cancer Cells In Vitro and In Vivo 
Purpose
To investigate the antitumor activities of a histone deacetylase (HDAC) inhibitor, MPT0E028, plus sorafenib in liver cancer cells in vitro and in vivo.
Experimental Design
Different liver cancer cell lines were exposed to sorafenib in the presence or absence of MPT0E028, and cell viability was determined by MTT assay. Effects of combined treatment on cell cycle and intracellular signaling pathways were assessed by flow cytometry and Western blot analysis. The Hep3B xenograft model was used to examine the antitumor activity in vivo.
Results
Our data indicate that sorafenib and MPT0E028 synergistically reduced cell viability in liver cancer cells, and also markedly induced apoptotic cell death in these cells, as evidenced by the cleavage of caspase-3, PARP, and DNA fragmentation. MPT0E028 altered the global modifications of histone and nonhistone proteins regardless of the presence of sorafenib. However, sorafenib blocked MPT0E028-induced Erk activation and its downstream signaling cascades, such as Stat3 phosphorylation (Ser727) and Mcl-1 upregulation. Ectopic expression of constitutively active Mek successively reversed the apoptosis triggered by the combined treatment. Pharmacologic inhibition of Mek by PD98059 potentiated MPT0E028-induced apoptosis, suggesting that the synergistic interaction between MPT0E028 and sorafenib occurs at least partly through inhibition of Erk signaling. The data demonstrated that transcriptional activation of fibroblast growth factor receptor 3 (FGFR3) contributes to MPT0E028-mediated Erk phosphorylation. Finally, MPT0E028 plus sorafenib significantly improved the tumor growth delay (TGD) in a Hep3B xenograft model.
Conclusions
These findings suggest that MPT0E028 in combination with sorafenib has significant anti-hepatocellular carcinoma activity in preclinical models, potentially suggesting a novel therapeutic strategy for patients with advanced hepatocellular carcinoma.
doi:10.1158/1078-0432.CCR-12-3909
PMCID: PMC4284945  PMID: 24520095
15.  Sensitive Liquid Chromatography/mass Spectrometry Methods for Quantification of Pomalidomide in Mouse Plasma and Brain Tissue 
Journal of pharmaceutical and biomedical analysis  2013;88:10.1016/j.jpba.2013.08.036.
Pomalidomide was recently approved by the United States Food and Drug Administration for the treatment of patients with relapsed or refractory multiple myeloma who have received at least two prior therapies. As pomalidomide is increasingly evaluated in other diseases and animal disease models, this manuscript presents development and validation of a sensitive liquid chromatography tandem mass spectrometry assay for quantification of pomalidomide in mouse plasma and brain tissue to fill a gap in published preclinical pharmacokinetic and analytical data with this agent. After acetonitrile protein precipitation, pomalidomide and internal standard, hesperitin, were separated with reverse phase chromatography on a C-18 column with a gradient mobile phase of water and acetonitrile with 0.1% fomic acid. Positive atmospheric pressure chemical ionization mass spectrometry with selected reaction monitoring mode was applied to achieve 0.3–3000 nM (0.082–819.73 ng/mL) linear range in mouse plasma and 0.6–6000 pmol/g in brain tissue. The within- and between-batch accuracy and precision were less than 15% for both plasma and brain tissue. The method was applied to measure pomalidomide concentrations in plasma and brain tissue in a pilot mouse pharmacokinetic study with an intravenous dose of 0.5 mg/kg. This assay can be applied for thorough characterization of pomalidomide pharmacokinetics and tissue distribution in mice.
doi:10.1016/j.jpba.2013.08.036
PMCID: PMC3860284  PMID: 24095801
Pomalidomide; Liquid Chromatography-Mass Spectrometry; Mouse; Plasma; Brain; Pharmacokinetics
16.  A Review of the Existing Grading Schemes and a Proposal for a Modified Grading Scheme for Prostatic Lesions in TRAMP Mice 
Toxicologic pathology  2011;40(1):5-17.
The transgenic adenocarcinoma of the mouse prostate (TRAMP) model is well established and offers several advantages for the study of chemopreventive agents, including its well-defined course of disease progression and high incidence of poorly differentiated carcinomas within a relatively short length of time. However, there is no consensus on the grading of prostatic lesions in these mice. In particular, agreement is lacking on the criteria for differentiating prostatic intraepithelial neoplasia (PIN) from well-differentiated adenocarcinoma, specifically as it relates to evidence of invasion. This differentiation is critical for evaluating the effects of putative chemopreventive agents on progression to neoplasia. Moreover, only one of the published grading schemes assigns numerical grades to prostatic lesions, which facilitate statistical analysis. Here, we review five currently available grading schemes and propose a refined scheme that provides a useful definition of invasion for the differentiation of PIN from well-differentiated adenocarcinoma and includes a numerical scoring system that accounts for both the most severe and most common histopathological lesions in each of the lobes of the prostate and their distributions. We expect that researchers will find this refined grading scheme to be useful for chemoprevention studies in TRAMP mice.
doi:10.1177/0192623311425062
PMCID: PMC4271830  PMID: 22021166
TRAMP; prostate; prostate cancer; lesion grades; chemoprevention
17.  Insulin-like growth factor-I receptor is suppressed through transcriptional repression and mRNA destabilization by a novel energy restriction-mimetic agent 
Carcinogenesis  2013;34(12):2694-2705.
Insulin-like growth factor-I receptor (IGF-IR) represents one of the major targets by which dietary or chemically induced energy restriction mediates chemopreventive effects in animal tumor models. However, the mechanism underlying this cellular response remains unclear. In the course of investigating the suppressive effect of the energy restriction-mimetic agent CG-5 on IGF-IR expression in prostate cancer cells, we identified a novel posttranscriptional mechanism by which the RNA-binding protein human antigen R (HuR) regulates IGF-IR expression through messenger RNA (mRNA) stabilization. Previously, we demonstrated that Sp1 and HuR proteins were concomitantly targeted for ubiquitin-dependent degradation by β-transducin repeat-containing protein in response to CG-5. Although this loss of Sp1 expression contributed to CG-5-mediated IGF-IR downregulation, enforced specific protein 1 (Sp1) expression could only partially protect cells from the drug effect. The small interfering RNA-mediated silencing of HuR suppressed IGF-IR expression by reducing mRNA stability, whereas ectopic HuR expression increased IGF-IR mRNA stability and protein expression and, when coexpressed with Sp1, blocked CG-5-mediated IGF-IR ablation. RNA pull-down and immunoprecipitation analyses indicated that HuR selectively bound to the distal region of the IGF-IR 3′ untranslated region (UTR), whereas no interaction with the 5′UTR was noted. Evaluation of a series of truncated HuR mutants revealed that the RNA recognition motifs (RRM2 and RRM3) were involved in IGF-IR 3′UTR binding and the consequent increase in IGF-IR mRNA stability. Although these data contrast with a previous report that HuR acted as a translation repressor of IGF-IR mRNA through 5′UTR binding, our finding is consistent with the reported oncogenic role of HuR in conferring stability to target mRNAs encoding tumor-promoting proteins.
doi:10.1093/carcin/bgt251
PMCID: PMC3845891  PMID: 23864387
18.  Calanquinone A induces anti-glioblastoma activity through glutathione-involved DNA damage and AMPK activation 
Glioblastoma, a highly malignant glioma, is resistant to both radiation and chemotherapy and is an intractable problem in clinical treatment. New therapeutic approaches are in urgent need. Calanquinone A, an herbal constituent, displayed anti-proliferative activity against glioblastoma cells, including A172, T98 and U87. Flow cytometric analysis showed an S phase arrest and a subsequent apoptosis to calanquinone A action. Further identification demonstrated a rapid increase of γH2A.X formation at S phase. The data together with comet tail formation and Chk1 activation indicated DNA damage response. N-acetyl cysteine (an antioxidant and a glutathione precursor) and exogenously applied glutathione, but not trolox (an antioxidant), completely abolished calanquinone A-induced effects. Immunofluorescence assay revealed that calanquinone A decreased the intracellular glutathione levels in both A172 and T98 cells. However, calanquinone A, by itself, did not conjugate glutathione. The data suggested that the decrease of cellular glutathione predominantly contributed to the anticancer mechanism. Furthermore, calanquinone A induced the activation of AMP-activated protein kinase (AMPK) and the inhibition of p70S6K activity. Rhodamine efflux assay showed that calanquinone A did not block efflux activity, indicating that calanquinone A was not a P-glycoprotein substrate. In summary, the data suggest that calanquinone A displays anti-glioblastoma activity through a decrease of cellular glutathione levels that subsequently induces DNA damage stress and AMPK activation, leading to cell cycle arrest at S-phase and apoptotic cell death. Furthermore, calanquinone A does not serve as a P-glycoprotein substrate, suggesting a potential for further development in anti-glioblastoma therapy.
doi:10.1016/j.ejphar.2014.02.029
PMCID: PMC4249740  PMID: 24607408
Calanquinone A; Glutathione; DNA damage; AMPK; Glioblastoma
19.  Prospects on Strategies for Therapeutically Targeting Oncogenic Regulatory Factors by Small-Molecule Agents 
Journal of cellular biochemistry  2014;115(4):611-624.
Although the Human Genome Project has raised much hope for the identification of druggable genetic targets for cancer and other diseases, this genetic target-based approach has not improved productivity in drug discovery over the traditional approach. Analyses of known human target proteins of currently marketed drugs reveal that these drugs target only a limited number of proteins as compared to the whole proteome. In contrast to genome-based targets, mechanistic targets are derived from empirical research, at cellular or molecular levels, in disease models and/or in patients, thereby enabling the exploration of a greater number of druggable targets beyond the genome and epigenome. The paradigm shift has made a tremendous headway in developing new therapeutic agents targeting different clinically relevant mechanisms/pathways in cancer cells. In this Prospects article, we provide an overview of potential drug targets related to the following four emerging areas: (1) tumor metabolism (the Warburg effect), (2) dysregulated protein turnover (E3 ubiquitin ligases), (3) protein–protein interactions, and (4) unique DNA high-order structures and protein–DNA interactions. Nonetheless, considering the genetic and phenotypic heterogeneities that characterize cancer cells, the development of drug resistance in cancer cells by adapting signaling circuitry to take advantage of redundant pathways or feedback/crosstalk systems is possible. This “phenotypic adaptation” underlies the rationale of using therapeutic combinations of these targeted agents with cytotoxic drugs.
doi:10.1002/jcb.24704
PMCID: PMC4240004  PMID: 24166934
WARBURG EFFECT; E3 LIGASES; PROTEIN–PROTEIN INTERACTIONS; PROTEIN–DNA INTERACTIONS; DNA QUADRUPLEX
20.  Reevesioside F induces potent and efficient anti-proliferative and apoptotic activities through Na+/K+-ATPase α3 subunit-involved mitochondrial stress and amplification of caspase cascades 
Biochemical pharmacology  2013;86(11):1564-1575.
Reevesioside F, isolated from Reevesia formosana, induced anti-proliferative activity that was highly correlated with the expression of Na+/K+-ATPase α3 subunit in several cell lines, including human leukemia HL-60 and Jurkat cells, and some other cell lines. Knockdown of α3 subunit significantly inhibited cell apoptosis suggesting a crucial role of the α3 subunit. Reevesioside F induced a rapid down-regulation of survivin protein, followed by release of cytochrome c from mitochondria and loss of mitochondrial membrane potential (ΔΨm). Further examination demonstrated the mitochondrial damage in leukemic cells through Mcl-1 down-regulation, Noxa up-regulation and an increase of the formation of truncated Bid, tBim and a 23-kDa cleaved Bcl-2 fragment. Furthermore, reevesioside F induced an increase of mitochondria-associated acetyl α-tubulin that may also contribute to apoptosis. The caspase cascade was profoundly activated by reevesioside F. Notably, the specific caspase-3 inhibitor z-DEVD-fmk significantly blunted reevesioside F-induced loss of ΔΨm and apoptosis, suggesting that caspase-3 activation may further amplify mitochondrial damage and apoptotic signaling cascade. In spite of being a cardiac glycoside, reevesioside F did not increase the intracellular Ca2+ levels. Moreover, CGP-37157 which blocked Na+/Ca2+ exchanger on plasma membrane and mitochondria did not modify reevesioside F-mediated effect. In summary, the data suggest that reevesioside F induces apoptosis through the down-regulation of survivin and Mcl-1, and the formation of pro-apoptotic fragments from Bcl-2 family members. The loss of ΔΨm and mitochondrial damage are responsible for the activation of caspases. Moreover, the amplification of caspase-3-mediated signaling pathway contributes largely to the execution of apoptosis in leukemic cells.
doi:10.1016/j.bcp.2013.09.021
PMCID: PMC4240014  PMID: 24099795
Reevesioside F; Na+/K+-ATPase α3 subunit; Survivin; Mitochondrial damage; Bcl-2 family of protein
21.  Rottlerin potentiates camptothecin-induced cytotoxicity in human hormone refractory prostate cancers through increased formation and stabilization of topoisomerase I-DNA cleavage complexes in a PKCδ-independent pathway 
Biochemical pharmacology  2012;84(1):59-67.
Combination therapy, which can optimize killing activity to cancers and minimize drug resistance, is a mainstream therapy against hormone-refractory prostate cancers (HRPCs). Rottlerin, a natural polyphenolic component, synergistically increased PC-3 (a HRPC cell line) apoptosis induced by camptothecin (a topoisomerase I inhibitor). Using siRNA technique to knockdown protein kinase C-δ (PKCδ), the data showed that rottlerin-mediated synergistic effect was PKCδ-independent, although rottlerin has been used as a PKCδ inhibitor. Rottlerin potentiated camptothecin-induced DNA fragmentation at S phase and ATM phosphorylation at Ser1981. The effect was correlated to apoptosis (r2 = 0.9). To detect upstream signals, the data showed that camptothecin acted on and stabilized topoisomerase I-DNA complex, leading to the formation of camptothecin-trapped cleavage complexes (TOP1cc). The effect was potentiated by rottlerin. To determine DNA repair capability, the time-related γH2A.X formation was examined after camptothecin removal. Consequently, rottlerin significantly inhibited camptothecin removal-mediated decline of γH2A.X formation at S phase, indicating the impairment of DNA repair activity in the presence of rottlerin. The combinatory treatment of camptothecin and rottlerin induced conformational change and activation of Bax and formation of truncated Bad, suggesting the contribution of mitochondria stress to apoptosis. In summary, the data suggest that rottlerin-mediated camptothecin sensitization is through the augmented stabilization of TOP1cc, leading to an increase of DNA damage stress and, possibly, an impairment of DNA repair capability. Subsequently, mitochondria-involved apoptosis is triggered through Bax activation and truncated Bad formation. The novel discovery may provide an anticancer approach of combinatory use between rottlerin and camptothecin for the treatment of HRPCs.
doi:10.1016/j.bcp.2012.03.023
PMCID: PMC4208915  PMID: 22490701
Camptothecin; Rottlerin; Topoisomerase I-DNA cleavage complex; DNA damage; Hormone-refractory prostate cancer
22.  Pim-1 knockdown potentiates paclitaxel-induced apoptosis in human hormone-refractory prostate cancers through inhibition of NHEJ DNA repair 
Cancer letters  2012;319(2):214-222.
The knockdown of Pim-1 or inhibition of Pim-1 activity significantly increased c-H2A.X expression. The effect was correlated to apoptosis and was attributed to the inhibition of nonhomologous DNA-end-joining (NHEJ) repair activity supported by the following observations: (1) inhibition of ATM and DNA-PKcs activities, (2) down-regulation of Ku expression and nuclear localization and (3) decrease of DNA end-binding of both Ku70 and Ku80. The data suggest that Pim-1 plays a crucial role in the regula-tion of NHEJ repair. In the absence of Pim-1, the ability of DNA repair significantly decreases when exposed to paclitaxel, leading to severe DNA damage and apoptosis.
doi:10.1016/j.canlet.2012.01.004
PMCID: PMC4207118  PMID: 22261337
Pim-1; Paclitaxel; H2A.X phosphorylation; NHEJ DNA repair; Prostate cancers
23.  Synthesis and Biological Evaluation of 1-Arylsulfonyl-5-(N-hydroxyacrylamide)indoles as Potent Histone Deacetylase Inhibitors with Antitumor Activity in Vivo 
Journal of medicinal chemistry  2012;55(8):3777-3791.
A series of 1-arylsulfonyl-5-(N-hydroxyacrylamide)indoles has been identified as a new class of histone deacetylase inhibitors. Compounds 8, 11, 12, 13, and 14 demonstrated stronger antiproliferative activities than 1 (SAHA) with GI50 values ranging from 0.36 to 1.21 μM against Hep3B, MDA-MB-231, PC-3, and A549 human cancer cell lines. Lead compound 8 showed remarkable HDAC 1, 2, and 6 isoenzymes inhibitory activities with IC50 values of 12.3, 4.0, 1.0 nM, respectively, which are comparable to 1. In in vivo efficacy evaluation against lung A549 xenograft model, 8 displayed better antitumor activity than compound 1.
doi:10.1021/jm300197a
PMCID: PMC4201585  PMID: 22439863
24.  Total Syntheses of the Histone Deacetylase Inhibitors Largazole and 2-epi-Largazole: Application of N-Heterocyclic Carbene Mediated Acylations in Complex Molecule Synthesis 
The Journal of organic chemistry  2011;76(4):1140-1150.
Details of the evolution of strategies toward convergent assembly of the histone deacetylase inhibiting natural product largazole exploiting γ,δ-unsaturated-α,β-epoxy-aldehydes and a thiazole-thiazoline containing ω-amino-acid are described. The initial N-heterocyclic carbene mediated redox amidation exploying these two types of building blocks representing largazole’s structural domains of distinct biosynthetic origin directly afforded the seco-acid of largazole. This was accomplished without any protecting groups resident upon either thioester bearing epoxy-aldehyde or the tetrapeptide. However, the ineffective production of largazole via the final macrolactonization led to an alternative intramolecular esterification/macrolactamization strategy employing the established two building blocks. This provided largazole along with its C2-epimer via an unexpected inversion of the α-stereocenter at the valine residue. The biological evaluation demonstrated that both largazole and 2-epi-largazole led to dose-dependent increases of acetylation of histone H3, indicating their potencies as class I histone deacetylase selective inhibitiors. Enhanced p21 expression was also induced by largazole and its C2 epimer. In addition, 2-epi-largazole displayed more potent activity than largazole in cell viability assays against PC-3 and LNCaP prostate cancer cell lines.
doi:10.1021/jo102478x
PMCID: PMC4201586  PMID: 21244075
25.  Histone Deacetylase Inhibitor AR-42 Enhances E7-Specific CD8+ T Cell-Mediated Antitumor Immunity Induced by Therapeutic HPV DNA Vaccination 
We have previously created a potent DNA vaccine encoding calreticulin linked to the HPV oncogenic protein E7 (CRT/E7). While treatment of the CRT/E7 DNA vaccine generates significant tumor-specific immune responses in vaccinated mice, the potency of the DNA vaccine could potentially be improved by co-administration of a histone deacetylase inhibitor (HDACi) as HDACi have been shown to increase the expression of MHC class I and II molecules. Thus, we aimed to determine whether co-administration of a novel HDACi, AR-42, with therapeutic HPV DNA vaccines could improve activation of HPV antigen-specific CD8+ T cells resulting in potent therapeutic antitumor effects. To do so, HPV-16 E7-expressing murine TC-1 tumor-bearing mice were treated orally with AR-42 and/or CRT/E7 DNA vaccine via gene gun. Mice were monitored for E7-specific CD8+ T cell immune responses and antitumor effects. TC-1 tumor-bearing mice treated with AR-42 and CRT/E7 DNA vaccine experienced longer survival, decreased tumor growth, and enhanced E7-specific immune response compared to mice treated with AR-42 or CRT/E7 DNA vaccine alone. Additionally, treatment of TC-1 cells with AR-42 increased surface expression of MHC class I molecules and increased the susceptibility of tumor cells to the cytotoxicity of E7-specific T cells. This study indicates the ability of AR-42 to significantly enhance the potency of the CRT/E7 DNA vaccine by improving tumor-specific immune responses and antitumor effects. Both AR-42 and CRT/E7 DNA vaccine have been used in independent clinical trials and the current study serves as foundation for future clinical trials combining both treatments in cervical cancer therapy.
doi:10.1007/s00109-013-1054-9
PMCID: PMC3783646  PMID: 23715898
Cancer vaccine; human papillomavirus; cervical cancer; histone deacetylase inhibitor

Results 1-25 (71)