PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-13 (13)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Targeting breast cancer-initiating/stem cells with melanoma differentiation-associated gene-7/interleukin-24 
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis and modulation of antitumor immune responses. In our study, we elucidated the role of MDA-7/IL-24 in inhibiting growth of breast cancer-initiating/stem cells. Ad.mda-7 infection decreased proliferation of breast cancer-initiating/stem cells without affecting normal breast stem cells. Ad.mda-7 induced apoptosis and endoplasmic reticulum stress in breast cancer-initiating/stem cells similar to unsorted breast cancer cells and inhibited the self-renewal property of breast cancer-initiating/stem cells by suppressing Wnt/β-catenin signaling. Prevention of inhibition of Wnt signaling by LiCl increased cell survival upon Ad.mda-7 treatment, suggesting that Wnt signaling inhibition might play a key role in MDA-7/IL-24-mediated death of breast cancer-initiating/stem cells. In a nude mouse subcutaneous xenograft model, Ad.mda-7 injection profoundly inhibited growth of tumors generated from breast cancer-initiating/stem cells and also exerted a potent “bystander” activity inhibiting growth of distant uninjected tumors. Further studies revealed that tumor growth inhibition by Ad.mda-7 was associated with a decrease in proliferation and angiogenesis, two intrinsic features of MDA-7/IL-24, and a reduction in vivo in the percentage of breast cancer-initiating/stem cells. Our findings demonstrate that MDA-7/IL-24 is not only nontoxic to normal cells and normal stem cells but also can kill both unsorted cancer cells and enriched populations of cancer-initiating/stem cells, providing further documentation that MDA-7/IL-24 might be a safe and effective way to eradicate cancers and also potentially establish disease-free survival.
doi:10.1002/ijc.28289
PMCID: PMC4334374  PMID: 23720015
MDA-7/IL-24; apoptosis; Wnt signaling; cancer-initiating/stem cells; breast cancer
2.  Enhanced Prostate Cancer Gene Transfer and Therapy Using a Novel Serotype Chimera Cancer Terminator Virus (Ad.5/3-CTV) 
Journal of cellular physiology  2014;229(1):34-43.
Few options are available for treating patients with advanced prostate cancer (PC). As PC is a slow growing disease and accessible by ultrasound, gene therapy could provide a viable option for this neoplasm. Conditionally replication-competent adenoviruses (CRCAs) represent potentially useful reagents for treating PC. We previously constructed a CRCA, cancer terminator virus (CTV), which showed efficacy both in vitro and in vivo for PC. The CTV was generated on a serotype 5-background (Ad.5-CTV) with infectivity depending on Coxsackie-Adenovirus Receptors (CARs). CARs are frequently reduced in many tumor types, including PCs thereby limiting effective Ad-mediated therapy. Using serotype chimerism, a novel CTV (Ad.5/3-CTV) was created by replacing the Ad.5 fiber knob with the Ad.3 fiber knob thereby facilitating infection in a CAR-independent manner. We evaluated Ad.5/3-CTV in comparison with Ad.5-CTV in low CAR human PC cells, demonstrating higher efficiency in inhibiting cell viability in vitro. Moreover, Ad.5/3-CTV potently suppressed in vivo tumor growth in a nude mouse xenograft model and in a spontaneously induced PC that develops in Hi-myc transgenic mice. Considering the significant responses in a Phase I clinical trial of a non-replicating Ad.5-mda-7 in advanced cancers, Ad.5/3-CTV may exert improved therapeutic benefit in a clinical setting.
doi:10.1002/jcp.24408
PMCID: PMC4332535  PMID: 23868767
3.  Raf kinase inhibitor RKIP inhibits MDA-9/syntenin-mediated metastasis in melanoma 
Cancer research  2012;72(23):6217-6226.
Melanoma differentiation associated gene-9 (MDA-9), also known as syntenin, functions as a positive regulator of melanoma progression and metastasis. In contrast, the Raf kinase inhibitor RKIP, a negative modulator of RAF-stimulated MEKK activation, is strongly downregulated in metastatic melanoma cells. In this study, we explored an hypothesized inverse relationship between MDA-9 and RKIP in melanoma. Tumor array and cell line analyses confirmed an inverse relationship between expression of MDA-9 and RKIP during melanoma progression. We found that MDA-9 transcriptionally downregulated RKIP in support of a suggested crosstalk between these two proteins. Further, MDA-9 and RKIP physically interacted in a manner that correlated with a suppression of FAK and c-Src phosphorylation, crucial steps necessary for MDA-9 to promote FAK/c-Src complex formation and initiate signaling cascades that drive the MDA-9-mediated metastatic phenotype. Lastly, ectopic RKIP expression in melanoma cells overrode MDA-9-mediated signaling, inhibiting cell invasion, anchorage-independent growth and in vivo dissemination of tumor cells. Taken together, these findings establish RKIP as an inhibitor of MDA-9-dependent melanoma metastasis, with potential implications for targeting this process therapeutically.
doi:10.1158/0008-5472.CAN-12-0402
PMCID: PMC3939082  PMID: 23066033
RKIP; MDA-9/syntenin, melanoma; c-Src; FAK
4.  MDA-9/Syntenin and IGFBP-2 Promote Angiogenesis in Human Melanoma 
Cancer research  2012;73(2):844-854.
Melanoma differentiation associated gene-9 (mda-9/syntenin) encodes an adapter scaffold protein whose expression correlates with and mediates melanoma progression and metastasis. Tumor angiogenesis represents an integral component of cancer metastasis prompting us to investigate a possible role of mda-9/syntenin in inducing angiogenesis. Genetic (gain-of-function and loss-of-function) and pharmacological approaches were employed to modify mda-9/syntenin expression in normal immortal melanocytes, early radial growth phase melanoma and metastatic melanoma cells. The consequence of modifying mda-9/syntenin expression on angiogenesis was evaluated using both in vitro and in vivo assays, including tube formation assays using human vascular endothelial cells, CAM assays and xenograft tumor animal models. Gain-of-function and loss-of-function experiments confirm that MDA-9/syntenin induces angiogenesis by augmenting expression of several pro-angiogenic factors/genes. Experimental evidence is provided for a model of angiogenesis induction by MDA-9/syntenin in which MDA-9/syntenin interacts with the ECM activating Src and FAK resulting in activation by phosphorylation of Akt, which induces HIF-1α. The HIF-1α activates transcription of Insulin Growth Factor Binding Protein-2 (IGFBP-2), which is secreted thereby promoting angiogenesis and further induces endothelial cells to produce and secrete VEGF-A augmenting tumor angiogenesis. Our studies delineate an unanticipated cell non-autonomous function of MDA-9/syntenin in the context of angiogenesis, which may directly contribute to its metastasis-promoting properties. As a result, targeting MDA-9/syntenin or its downstream-regulated molecules may provide a means of simultaneously impeding metastasis by both directly inhibiting tumor cell transformed properties (autonomous) and indirectly by blocking angiogenesis (non-autonomous).
doi:10.1158/0008-5472.CAN-12-1681
PMCID: PMC3548987  PMID: 23233738
mda-9/syntenin; melanoma; angiogenesis; IGFBP-2; HuVECs; CAM assay
5.  Enhanced delivery of mda-7/IL-24 using a serotype chimeric adenovirus (Ad.5/3) in combination with the Apogossypol derivative BI-97C1 (Sabutoclax) improves therapeutic efficacy in low CAR colorectal cancer cells 
Journal of Cellular Physiology  2012;227(5):2145-2153.
Adenovirus (Ad)-based gene therapy represents a potentially viable strategy for treating colorectal cancer. The infectivity of serotype 5 adenovirus (Ad.5), routinely used as a transgene delivery vector, is dependent on Coxsackie-adenovirus receptors (CAR). CAR expression is downregulated in many cancers thus preventing optimum therapeutic efficiency of Ad.5-based therapies. To overcome the low CAR problem, a serotype chimerism approach was used to generate a recombinant Ad (Ad.5/3) that is capable of infecting cancer cells via Ad.3 receptors in a CAR-independent manner. We evaluated the improved transgene delivery and efficacy of Ad.5/3 recombinant virus expressing melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), an effective wide-spectrum cancer-selective therapeutic. In low CAR human colorectal cancer cells RKO, wild-type Ad.5 virus expressing mda-7/IL-24 (Ad.5-mda-7) failed to infect efficiently resulting in lack of expression of MDA-7/IL-24 or induction of apoptosis. However, a recombinant Ad.5/3 virus expressing mda-7/IL-24 (Ad.5/3-mda-7) efficiently infected RKO cells resulting in higher MDA-7/IL-24 expression and inhibition of cell growth both in vitro and in nude mice xenograft models. Addition of the novel Bcl-2 family pharmacological inhibitor Apogossypol derivative BI-97C1 (Sabutoclax) significantly augmented the efficacy of Ad.5/3-mda-7. A combination regimen of suboptimal doses of Ad.5/3-mda-7 and BI-97C1 profoundly enhanced cytotoxicity in RKO cells both in vitro and in vivo. Considering the fact that Ad.5-mda-7 has demonstrated significant objective responses in a Phase I clinical trial for advanced solid tumors, Ad.5/3-mda-7 alone or in combination with BI-97C1 would be predicted to exert significantly improved therapeutic efficacy in colorectal cancer patients.
doi:10.1002/jcp.22947
PMCID: PMC3228880  PMID: 21780116
Viral gene therapy; Mcl-1 inhibition; apoptosis induction; anti-tumor activity
6.  mda-7/IL-24 differentially regulates soluble and nuclear clusterin in prostate cancer 
Journal of Cellular Physiology  2012;227(5):1805-1813.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a unique member of the IL-10 gene family, displays a broad range of antitumor properties including cancer-specific induction of apoptosis, inhibition of tumor angiogenesis, and modulation of anti-tumor immune responses. Here we identify clusterin (CLU) as a MDA-7/IL-24 interacting protein in DU-145 cells and investigate the role of MDA-7/IL-24 in regulating CLU expression and mediating the antitumor properties of mda-7/IL-24 in prostate cancer. Ad.mda-7 decreased expression of soluble CLU (sCLU) and increased expression of nuclear CLU (nCLU). In the initial phase of Ad.mda-7 infection sCLU expression increased and CLU interacted with MDA-7/IL-24 producing a cytoprotective effect. Infection of stable clones of DU-145 prostate cancer cells expressing sCLU with Ad.mda-7 resulted in generation of nCLU that correlated with decreased cell viability and increased apoptosis. In the presence of mda-7/IL-24, sCLU-DU-145 cells displayed G2/M phase arrest followed by apoptosis. Similarly, Ad.mda-7 infection decreased cell migration by altering cytoskeleton in sCLU-DU-145 cells. Ad.mda-7-treated sCLU-DU-145 cells displayed a significant reduction in tumor growth in mouse xenograft models and reduced angiogenesis when compared to the vector control group. Tumor tissue lysates demonstrated enhanced nCLU generated from sCLU with increased apoptosis in the presence of MDA-7/IL-24. Our findings reveal novel aspects relative to the role of sCLU/nCLU in regulating the anticancer properties of MDA-7/IL-24 that may be exploited for developing enhanced therapies for prostate cancer.
doi:10.1002/jcp.22904
PMCID: PMC3228882  PMID: 21732348
MDA-7/IL-24; soluble clusterin; nuclear clusterin; G2/M arrest; apoptosis
7.  Targeted Apoptotic Effects of Thymoquinone and Tamoxifen on XIAP Mediated Akt Regulation in Breast Cancer 
PLoS ONE  2013;8(4):e61342.
X-linked inhibitor of apoptosis protein (XIAP) is constitutively expressed endogenous inhibitor of apoptosis, exhibit its antiapoptotic effect by inactivating key caspases such as caspase-3, caspase-7 and caspase-9 and also play pivotal role in rendering cancer chemoresistance. Our studies showed the coadministration of TQ and TAM resulting in a substantial increase in breast cancer cell apoptosis and marked inhibition of cell growth both in vitro and in vivo. Anti-angiogenic and anti-invasive potential of TQ and TAM was assessed through in vitro studies. This novel combinatorial regimen leads to regulation of multiple cell signaling targets including inactivation of Akt and XIAP degradation. At molecular level, TQ and TAM synergistically lowers XIAP expression resulting in binding and activation of caspase-9 in apoptotic cascade, and interfere with cell survival through PI3-K/Akt pathway by inhibiting Akt phosphorylation. Cleaved caspase-9 further processes other intracellular death substrates such as PARP thereby shifting the balance from survival to apoptosis, indicated by rise in the sub-G1 cell population. This combination also downregulates the expression of Akt-regulated downstream effectors such as Bcl-xL, Bcl-2 and induce expression of Bax, AIF, cytochrome C and p-27. Consistent with these results, overexpression studies further confirmed the involvement of XIAP and its regulatory action on Akt phosphorylation along with procaspase-9 and PARP cleavage in TQ-TAM coadministrated induced apoptosis. The ability of TQ and TAM in inhibiting XIAP was confirmed through siRNA-XIAP cotransfection studies. This novel modality may be a promising tool in breast cancer treatment.
doi:10.1371/journal.pone.0061342
PMCID: PMC3629226  PMID: 23613836
8.  Targeting Mcl-1 for the therapy of cancer 
Introduction
Human cancers are genetically and epigenetically heterogeneous and have the capacity to commandeer a variety of cellular processes to aid in their survival, growth and resistance to therapy. One strategy is to overexpress proteins that suppress apoptosis, such as the Bcl-2 family protein Mcl-1. The Mcl-1 protein plays a pivotal role in protecting cells from apoptosis and is overexpressed in a variety of human cancers.
Areas covered
Targeting Mcl-1 for extinction in these cancers, using genetic and pharmacological approaches, represents a potentially effectual means of developing new efficacious cancer therapeutics. Here we review the multiple strategies that have been employed in targeting this fundamental protein, as well as the significant potential these targeting agents provide in not only suppressing cancer growth, but also in reversing resistance to conventional cancer treatments.
Expert Opinion
We discuss the potential issues that arise in targeting Mcl-1 and other Bcl-2 anti-apoptotic proteins, as well problems with acquired resistance. The application of combinatorial approaches that involve inhibiting Mcl-1 and manipulation of additional signaling pathways to enhance therapeutic outcomes is also highlighted. The ability to specifically inhibit key genetic/epigenetic elements and biochemical pathways that maintain the tumor state represent a viable approach for developing rationally based, effective cancer therapies.
doi:10.1517/13543784.2011.609167
PMCID: PMC3205956  PMID: 21851287
9.  Astrocyte elevated gene-1 activates AMPK in response to cellular metabolic stress and promotes protective autophagy 
Autophagy  2011;7(5):547-548.
doi:10.4161/auto.7.5.15078
PMCID: PMC3127215  PMID: 21412050
AEG-1; protective autophagy; AMPK; ATG5
10.  mda-7/IL-24: A Unique Member of the IL-10 Gene Family Promoting Cancer-Targeted Toxicity 
Cytokine & growth factor reviews  2010;21(5):381-391.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a unique member of the IL-10 gene family that displays nearly ubiquitous cancer-specific toxicity, with no harmful effects toward normal cells or tissues. mda-7/IL-24 was cloned from human melanoma cells by differentiation induction subtraction hybridization (DISH) and promotes endoplasmic reticulum (ER) stress culminating in apoptosis or toxic autophagy in a broad-spectrum of human cancers, when assayed in cell culture, in vivo in human tumor xenograft mouse models and in a Phase I clinical trial in patients with advanced cancers. This therapeutically active cytokine also induces indirect anti-tumor activity through inhibition of angiogenesis, stimulation of an anti-tumor immune response, and sensitization of cancer cells to radiation-, chemotherapy- and antibody-induced killing.
doi:10.1016/j.cytogfr.2010.08.004
PMCID: PMC3164830  PMID: 20926331
mda-7/IL-24; apoptosis; autophagy; bystander antitumor activity; cancer terminator virus
11.  Mechanism by Which Mcl-1 Regulates Cancer-Specific Apoptosis Triggered by mda-7/IL-24, an IL-10-Related Cytokine 
Cancer research  2010;70(12):5034-5045.
Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24), a cytokine belonging to the IL-10 family, selectively induces apoptosis in cancer cells without harming normal cells by promoting an endoplasmic reticulum (ER) stress response. The precise molecular mechanism by which the ER stress response culminates in cell death requires further clarification. The present study shows that in prostate carcinoma cells, the mda-7/IL-24-induced ER stress response causes apoptosis by translational inhibition of the antiapoptotic protein myeloid cell leukemia-1 (Mcl-1). Forced expression of Mcl-1 blocked mda-7/IL-24 lethality, whereas RNA interference or gene knockout of Mcl-1 markedly sensitized transformed cells to mda-7/IL-24. Mcl-1 downregulation by mda-7/IL-24 relieved its association with the proapoptotic protein Bak, causing oligomerization of Bak and leading to cell death. These observations show the profound role of the Bcl-2 protein family member Mcl-1 in regulating cancer-specific apoptosis induced by this cytokine. Thus, our studies provide further insights into the molecular mechanism of ER stress-induced cancer-selective apoptosis by mda-7/IL-24. As Mcl-1 is overexpressed in the majority of prostate cancers, mda-7/IL-24 might provide an effective therapeutic for this disease.
doi:10.1158/0008-5472.CAN-10-0563
PMCID: PMC3171699  PMID: 20501829
12.  Autophagy switches to apoptosis in prostate cancer cells infected with melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) 
Autophagy  2011;7(9):1076-1077.
MDA-7/IL-24 has noteworthy potential as an anticancer therapeutic because of its diversity of antitumor properties, its lack of toxicity toward normal cells and tissues, and its safety and efficacy as evidenced in a phase I clinical trial. In a recent study, we document that Ad.mda-7-induced ER stress and ceramide production leads to early autophagy that subsequently switches to apoptosis in human prostate cancer cells. During the apoptotic phase, the MDA-7/IL-24 protein physically interacts with Beclin 1 and this interaction might inhibit Beclin 1 function culminating in apoptosis. Conversely, Ad.mda-7 infection leads to calpain-mediated cleavage of the Atg5 protein that might also facilitate a biochemical switch from autophagy to apoptosis. Our recent paper reveals novel aspects of the interplay between autophagy and apoptosis that underlie the cytotoxic action of MDA-7/IL-24 in prostate cancer cells. These new insights into MDA-7/IL-24 action provide intriguing leads for developing innovative combinatorial approaches for prostate cancer therapy.
doi:10.4161/auto.7.9.16163
PMCID: PMC3210317  PMID: 21610321
mda-7/IL-24; protective autophagy; apoptosis; Beclin 1; Atg5
13.  Mechanism of autophagy to apoptosis switch triggered in prostate cancer cells by antitumor cytokine mda-7/IL-24 
Cancer research  2010;70(9):3667-3676.
mda-7/IL-24 is a unique member of the IL-10 gene family, which displays a broad range of antitumor properties including induction of cancer-specific apoptosis. Adenoviral mediated delivery by Ad.mda-7 invokes an endoplasmic reticulum stress response that is associated with ceramide production and autophagy in some cancer cells. Here we report that Ad.mda-7-induced ER stress and ceramide production triggers autophagy in human prostate cancer cells, but not normal prostate epithelial cells, through a canonical signaling pathway that involves Beclin-1, atg5 and hVps34. Autophagy occurs in cancer cells at early times after Ad.mda-7 infection but a switch to apoptosis occurs by 48 hr post-infection. Inhibiting autophagy with 3-methyladenosine increases Ad.mda-7-induced apoptosis, suggesting that autophagy may be initiated first as a cytoprotective mechanism. Inhibiting apoptosis by overexpression of anti-apoptotic proteins Bcl-2 or Bcl-xL increased autophagy after Ad.mda-7 infection. During the apoptotic phase, the MDA-7/IL-24 protein physically interacted with Beclin-1 in a manner that could inhibit Beclin-1 function culminating in apoptosis. Conversely, Ad.mda-7 infection elicited calpain-mediated cleavage of the autophagic protein ATG5 in a manner that could facilitate switch to apoptosis. Our findings reveal novel aspects of the interplay between autophagy and apoptosis in prostate cancer cells that underlie the cytotoxic action of mda-7/IL-24, possibly providing new insights in the development of combinatorial therapies for prostate cancer.
doi:10.1158/0008-5472.CAN-09-3647
PMCID: PMC2874885  PMID: 20406981
mda-7/IL-24; protective autophagy; apoptosis; Beclin-1; atg5

Results 1-13 (13)