PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-6 (6)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  The Use of a Novel NanoLuc -Based Reporter Phage for the Detection of Escherichia coli O157:H7 
Scientific Reports  2016;6:33235.
Rapid detection of the foodborne pathogen Escherichia coli O157:H7 is of vital importance for public health worldwide. Among detection methods, reporter phages represent unique and sensitive tools for the detection of E. coli O157:H7 from food as they are host-specific and able to differentiate live cells from dead ones. Upon infection, target bacteria become identifiable since reporter genes are expressed from the engineered phage genome. The E. coli O157:H7 bacteriophage ΦV10 was modified to express NanoLuc luciferase (Nluc) derived from the deep-sea shrimp Oplophorus gracilirostris. Once infected by the ΦV10 reporter phage, E. coli O157:H7 produces a strong bioluminescent signal upon addition of commercial luciferin (Nano-Glo®). Enrichment assays using E. coli O157:H7 grown in LB broth with a reporter phage concentration of 1.76 × 102 pfu ml−1 are capable of detecting approximately 5 CFU in 7 hours. Comparable detection was achieved within 9 hours using 9.23 × 103 pfu ml−1 of phage in selective culture enrichments of ground beef as a representative food matrix. Therefore we conclude that this NanoLuc reporter phage assay shows promise for detection of E. coli O157:H7 from food in a simple, fast and sensitive manner.
doi:10.1038/srep33235
PMCID: PMC5021930  PMID: 27624517
2.  Influence of fullerene (C60) on soil bacterial communities: aqueous aggregate size and solvent co-introduction effects 
Scientific Reports  2016;6:28069.
Fullerene C60 nanoparticles are being used in broad range of applications. It is important to assess their potential impacts in the environment. We evaluated the effects of C60 introduced as aqueous suspensions of nC60 aggregates of different particle size or via organic solvents on soils with different organic matter contents in this study. Impacts of the application were evaluated by measuring total microbial biomass, metabolic activity and bacterial community structure. Results show that nC60 aggregates, introduced as an aqueous suspension, had size-dependent effects on soil bacterial community composition in the low organic matter system, but induced minimal change in the microbial biomass and metabolic activity in soils with both high and low organic matter contents. Fullerene C60, co-introduced via an organic solvent, did not influence the response of soil microbes to the organic solvents. Our results suggest that nC60 aggregates of smaller size may have negative impact on soil biota and soil organic matter may play a key role in modulating the environmental effect of nanomaterials.
doi:10.1038/srep28069
PMCID: PMC4910098  PMID: 27306076
3.  The effect of a novel low temperature-short time (LTST) process to extend the shelf-life of fluid milk 
SpringerPlus  2016;5(1):660.
Pasteurization has long been the standard method to extend the shelf-life of dairy products, as well as a means to reduce microbial load and the risk of food-borne pathogens. However, the process has limitations, which include cost effectiveness, high energy input, and reduction of product quality/organoleptic characteristics. In an effort to reduce these limitations and extend shelf-life, this study examined a novel low temperature, short time (LTST) method in which dispersed milk in the form of droplets was treated with low heat/pressure variation over a short treatment time, in conjunction with pasteurization. Lactobacillus fermentum and Pseudomonas fluorescens Migula were exposed to conventional pasteurization treatments with and without LTST. Using these organisms, the LTST addition was able to reduce microbial load below detection limits; 1.0 × 101 cfu/mL, from approximately 1.2 × 108 and 1.0 × 107 cfu/mL for L. fermentum and P. fluorescens Migula, respectively. In addition, the shelf-life of the treated, raw, and uninoculated product was prolonged from 14 to 35 days, compared with standard pasteurization, to as long as 63 days with the LTST amendment. Sensory analysis of samples also demonstrated equal or greater preference for LTST + pasteurization treated milk when compared to pasteurization alone (α = 0.05). Conventional pasteurization was effective at reducing the above mentioned microorganisms by as much as 5.0 log10 cfu/mL. However, LTST was able to achieve 7.0–8.0 log10 cfu/mL reduction of the same microorganisms. In addition, BActerial Rapid Detection using Optical scattering Technology detected and identified microorganisms isolated both pre- and post-treatment, of which the only organisms surviving LTST were Bacillus spp. Increased lethality, improved shelf-life, and equal or better organoleptic characteristics without increased energy consumption demonstrate the effectiveness of the incorporation of LTST. The improved shelf-life may potentially have major impacts in the dairy industry in terms of shipping and overall sustainability.
Electronic supplementary material
The online version of this article (doi:10.1186/s40064-016-2250-1) contains supplementary material, which is available to authorized users.
doi:10.1186/s40064-016-2250-1
PMCID: PMC4899401  PMID: 27350902
Low temperature; LTST; MST; Pasteurization; BARDOT
4.  Influence of nanophase titania topography on bacterial attachment and metabolism 
Surfaces with nanophase compared to conventional (or nanometer smooth) topographies are known to have different properties of area, charge, and reactivity. Previously published research indicates that the attachment of certain bacteria (such as Pseudomonas fluorescens 5RL) is higher on surfaces with nanophase compared to conventional topographies, however, their effect on bacterial metabolism is unclear. Results presented here show that the adhesion of Pseudomonas fluorescens 5RL and Pseudomonas putida TVA8 was higher on nanophase than conventional titania. Importantly, in terms of metabolism, bacteria attached to the nanophase surfaces had higher bioluminescence rates than on the conventional surfaces under all nutrient conditions. Thus, the results from this study show greater select bacterial metabolism on nanometer than conventional topographies, critical results with strong consequences for the design of improved biosensors for bacteria detection.
PMCID: PMC2636588  PMID: 19337418
bacteria; attachment; nanophase; topography; metabolism
5.  A Bioluminescent Whole-Cell Reporter for Detection of 2,4-Dichlorophenoxyacetic Acid and 2,4-Dichlorophenol in Soil 
Applied and Environmental Microbiology  2000;66(10):4589-4594.
A bioreporter was made containing a tfdRPDII-luxCDABE fusion in a modified mini-Tn5 construct. When it was introduced into the chromosome of Ralstonia eutropha JMP134, the resulting strain, JMP134-32, produced a sensitive bioluminescent response to 2,4-dichlorophenoxyacetic acid (2,4-D) at concentrations of 2.0 μM to 5.0 mM. This response was linear (R2 = 0.9825) in the range of 2.0 μM to 1.1 × 102 μM. Saturation occurred at higher concentrations, with maximal bioluminescence occurring in the presence of approximately 1.2 mM 2,4-D. A sensitive response was also recorded in the presence of 2,4-dichlorophenol at concentrations below 1.1 × 102 μM; however, only a limited bioluminescent response was recorded in the presence of 3-chlorobenzoic acid at concentrations below 1.0 mM. A significant bioluminescent response was also recorded when strain JMP134-32 was incubated with soils containing aged 2,4-D residues.
PMCID: PMC92351  PMID: 11010925
6.  Induction of the tod Operon by Trichloroethylene in Pseudomonas putida TVA8 
Applied and Environmental Microbiology  1998;64(12):5049-5052.
Bioluminescence, mRNA levels, and toluene degradation rates in Pseudomonas putida TVA8 were measured as a function of various concentrations of toluene and trichloroethylene (TCE). TVA8 showed an increasing bioluminescence response to increasing TCE and toluene concentrations. Compared to uninduced TVA8 cultures, todC1 mRNA levels increased 11-fold for TCE-treated cultures and 13-fold for toluene-treated cultures. Compared to uninduced P. putida F1 cultures, todC1 mRNA levels increased 4.4-fold for TCE-induced cultures and 4.9-fold for toluene-induced cultures. Initial toluene degradation rates were linearly correlated with specific bioluminescence in TVA8 cultures.
PMCID: PMC90968  PMID: 9835608

Results 1-6 (6)