PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-24 (24)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
Document Types
1.  Active, phosphorylated fingolimod inhibits histone deacetylases and facilitates fear extinction memory 
Nature neuroscience  2014;17(7):971-980.
FTY720 (fingolimod), an FDA-approved drug for treatment of multiple sclerosis, has beneficial effects in the CNS that are not yet well understood, independent of its effects on immune cell trafficking. We show that FTY720 enters the nucleus, where it is phosphorylated by sphingosine kinase 2 (SphK2), and that nuclear FTY720-P binds and inhibits class I histone deacetylases (HDACs), enhancing specific histone acetylations. FTY720 is also phosphorylated in mice and accumulates in the brain, including the hippocampus, inhibits HDACs and enhances histone acetylation and gene expression programs associated with memory and learning, and rescues memory deficits independently of its immunosuppressive actions. Sphk2−/− mice have lower levels of hippocampal sphingosine-1-phosphate, an endogenous HDAC inhibitor, and reduced histone acetylation, and display deficits in spatial memory and impaired contextual fear extinction. Thus, sphingosine-1-phosphate and SphK2 play specific roles in memory functions and FTY720 may be a useful adjuvant therapy to facilitate extinction of aversive memories.
doi:10.1038/nn.3728
PMCID: PMC4256678  PMID: 24859201
2.  K63-linked polyubiquitylation of IRF1 transcription factor is essential for IL-1-induced CCL5 and CXCL10 chemokine production 
Nature immunology  2014;15(3):231-238.
Although interleukin-1 (IL-1) induces expression of interferon regulatory factor 1 (IRF1), its roles in immune and inflammatory responses and mechanisms of activation remain elusive. Here, we show that IRF1 is essential for IL-1-induced expression of chemokines CXCL10 and CCL5 that recruit mononuclear cells into sites of sterile inflammation. Newly synthesized IRF1 acquires K63-linked polyubiquitylation mediated by cellular inhibitor of apoptosis 2 (cIAP2), which is enhanced by the bioactive lipid sphingosine-1 phosphate (S1P). In response to IL-1, cIAP2 and sphingosine kinase 1, the enzyme that generates S1P, form a complex with IRF1, which leads to its activation. Thus, IL-1 triggers a hitherto unknown signaling cascade that controls induction of IRF1-dependent genes important for sterile inflammation.
doi:10.1038/ni.2810
PMCID: PMC3976678  PMID: 24464131
3.  Memo Has a Novel Role in S1P Signaling and Crucial for Vascular Development 
PLoS ONE  2014;9(4):e94114.
Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.
doi:10.1371/journal.pone.0094114
PMCID: PMC3979765  PMID: 24714781
4.  A specific sphingosine kinase 1 inhibitor attenuates airway hyperresponsiveness and inflammation in a mast cell-dependent mouse model of allergic asthma 
Background
Sphingosine-1-phosphate (S1P) produced by two sphingosine kinase isoenzymes, SphK1 and SphK2, has been implicated in IgE-mediated mast cell responses. However, studies of allergic inflammation in isotype-specific SphK knockout mice have not clarified their contribution and the role that S1P plays in vivo in a mast cell and IgE-dependent mouse model of allergic asthma has not yet been examined.
Objective
We used an isoenzyme-specific SphK1 inhibitor, SK1-I, to investigate the contributions of S1P and SphK1 to mast cell dependent airway hyperresponsiveness (AHR) and airway inflammation in mice.
Methods
Allergic airway inflammation and AHR were examined in a mast cell-dependent mouse model of ovalbumin (OVA)-induced asthma. C57BL/6 mice received intranasal delivery of SK1-I prior to sensitization and challenge with OVA or only prior to challenge.
Results
SK1-I inhibited antigen-dependent activation of human and murine mast cells and suppressed activation of NF-κB, a master transcription factor that regulates expression of pro-inflammatory cytokines. SK1-I treatment of mice sensitized to OVA in the absence of adjuvant, which develop mast cell-dependent allergic inflammation, significantly reduced OVA-induced AHR to methacholine; decreased numbers of eosinophils and levels of the cytokines IL-4, 5, 6, 13, IFN-γ, and TNF-α and the chemokines eotaxin, and CCL2 in bronchoalveolar lavage fluid; and decreased pulmonary inflammation as well as activation of NF-κB in the lungs.
CONCLUSION
S1P and SphK1 play important roles in mast cell-dependent, OVA-induced allergic inflammation and AHR, in part by regulating the NF-κB pathway.
doi:10.1016/j.jaci.2012.07.014
PMCID: PMC3563730  PMID: 22939756
sphingosine-1-phosphate; sphingosine kinase; mast cells; NF-kB; airway hyperresponsiveness; asthma
5.  Sphingosine-1-Phosphate Links Persistent STAT3 Activation, Chronic Intestinal Inflammation, and Development of Colitis-Associated Cancer 
Cancer cell  2012;23(1):107-120.
SUMMARY
Inflammatory bowel disease is an important risk factor for colorectal cancer. We show that sphingosine-1-phosphate (S1P) produced by upregulation of sphingosine kinase 1 (SphK1) links chronic intestinal inflammation to colitis-associated cancer (CAC) and both are exacerbated by deletion of Sphk2. S1P is essential for production of the multifunctional NF-κB-regulated cytokine IL-6, persistent activation of the transcription factor STAT3, and consequent upregulation of the S1P receptor, S1PR1. The pro-drug FTY720 decreased SphK1 and S1PR1 expression and eliminated the NF-κB/IL-6/STAT3 amplification cascade and development of CAC even in Sphk2−/− mice and may be useful in treating colon cancer in individuals with ulcerative colitis. Thus, the SphK1/S1P/S1PR1 axis is at the nexus between NF-κB and STAT3 and connects chronic inflammation and CAC.
doi:10.1016/j.ccr.2012.11.013
PMCID: PMC3578577  PMID: 23273921
6.  Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy 
Disease Models & Mechanisms  2013;7(1):41-54.
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.
doi:10.1242/dmm.013631
PMCID: PMC3882047  PMID: 24077965
HDAC; S1P; THI; dys; Dystrophin; mdx
7.  Sorafenib and pemetrexed toxicity in cancer cells is mediated via SRC-ERK signaling 
Cancer Biology & Therapy  2012;13(9):793-803.
The present studies sought to further understand how the anti-folate pemetrexed and the multi-kinase inhibitor sorafenib interact to kill tumor cells. Sorafenib activated SRC, and via SRC the drug combination activated ERK1/2. Expression of dominant negative SRC or dominant negative MEK1 abolished drug-induced ERK1/2 activation, together with drug-induced autophagy, acidic lysosome formation, and tumor cell killing. Protein phosphatase 2A is an important regulator of the ERK1/2 pathway. Fulvestrant resistant MCF7 cells expressed higher levels of the PP2A inhibitor SET/I2PP2A, had lower endogenous PP2A activity, and had elevated basal ERK1/2 activity compared with their estrogen dependent counterparts. Overexpression of I2PP2A blocked drug-induced activation of ERK1/2 and tumor cell killing. PP2A can be directly activated by ceramide and SET/I2PP2A can be inhibited by ceramide. Inhibition of the de novo ceramide synthase pathway blocked drug-induced ceramide generation, PP2A activation and tumor cell killing. Collectively these findings demonstrate that ERK1/2 plays an essential role downstream of SRC in pemetrexed and sorafenib lethality and that PP2A plays an important role in regulating this process.
doi:10.4161/cbt.20562
PMCID: PMC3679099  PMID: 22673740
ERK; I2PP2A; PP2A; SRC; autophagy; ceramide; pemetrexed; sorafenib
8.  Copper Dependence of Angioproliferation in Pulmonary Arterial Hypertension in Rats and Humans 
Obliteration of the vascular lumen by endothelial cell growth is a hallmark of many forms of severe pulmonary arterial hypertension. Copper plays a significant role in the control of endothelial cell proliferation in cancer and wound-healing. We sought to determine whether angioproliferation in rats with experimental pulmonary arterial hypertension and pulmonary microvascular endothelial cell proliferation in humans depend on the proangiogenic action of copper. A copper-depleted diet prevented, and copper chelation with tetrathiomolybdate reversed, the development of severe experimental pulmonary arterial hypertension. The copper chelation–induced reopening of obliterated vessels was caused by caspase-independent apoptosis, reduced vessel wall cell proliferation, and a normalization of vessel wall structure. No evidence was found for a role of super oxide–1 inhibition or lysyl–oxidase–1 inhibition in the reversal of angioproliferation. Tetrathiomolybdate inhibited the proliferation of human pulmonary microvascular endothelial cells, isolated from explanted lungs from control subjects and patients with pulmonary arterial hypertension. These data suggest that the inhibition of endothelial cell proliferation by a copper-restricting strategy could be explored as a new therapeutic approach in pulmonary arterial hypertension. It remains to be determined, however, whether potential toxicity to the right ventricle is offset by the beneficial pulmonary vascular effects of antiangiogenic treatment in patients with pulmonary arterial hypertension.
doi:10.1165/rcmb.2011-0296OC
PMCID: PMC3361355  PMID: 22162909
pulmonary hypertension; copper; angiogenesis; tetrathiomolybdate
9.  Biological Characterization of 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) as a Selective Sphingosine Kinase-2 Inhibitor and Anticancer Agent 
PLoS ONE  2013;8(2):e56471.
In our effort to develop selective sphingosine kinase-2 (SphK2) inhibitors as pharmacological tools, a thiazolidine-2,4-dione analogue, 3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145), was synthesized and biologically characterized. Biochemical assay results indicate that K145 is a selective SphK2 inhibitor. Molecular modeling studies also support this notion. In vitro studies using human leukemia U937 cells demonstrated that K145 accumulates in U937 cells, suppresses the S1P level, and inhibits SphK2. K145 also exhibited inhibitory effects on the growth of U937 cells as well as apoptotic effects in U937 cells, and that these effects may be through the inhibition of down-stream ERK and Akt signaling pathways. K145 also significantly inhibited the growth of U937 tumors in nude mice by both intraperitoneal and oral administration, thus demonstrating its in vivo efficacy as a potential lead anticancer agent. The antitumor activity of K145 was also confirmed in a syngeneic mouse model by implanting murine breast cancer JC cells in BALB/c mice. Collectively, these results strongly encourage further optimization of K145 as a novel lead compound for development of more potent and selective SphK2 inhibitors.
doi:10.1371/journal.pone.0056471
PMCID: PMC3577900  PMID: 23437140
10.  Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis 
Cancer Research  2012;72(3):726-735.
Sphingosine-1-phosphate (S1P) is a pleiotropic bioactive lipid mediator that promotes breast cancer progression by diverse mechanisms that remain somewhat unclear. Here we report pharmacological evidence of a critical role for sphingosine kinase 1 (SphK1) in producing S1P and mediating tumor-induced hemangiogenesis and lymphangiogenesis in a murine model of breast cancer metastasis. S1P levels increased both in the tumor and the circulation. In agreement, serum S1P levels were significantly elevated in stage IIIA human breast cancer patients, compared to age/ethnicity-matched healthy volunteers. However, treatment with the specific SphK1 inhibitor SK1-I suppressed S1P levels, reduced metastases to lymph nodes and lungs and decreased overall tumor burden of our murine model. Both S1P and angiopoietin 2 (Ang2) stimulated hemangiogenesis and lymphangiogenesis in vitro whereas SK1-I inhibited each process. We quantified both processes in vivo from the same specimen by combining Directed In Vivo Angiogenesis Assays (DIVAA) with Fluorescence Activated Cell Sorting (DIVAA/FACS), thereby confirming the results obtained in vitro. Notably, SK1-I decreased both processes not only at the primary tumor but also in lymph nodes, with peritumoral lymphatic vessel density reduced in SK1-I-treated animals. Taken together, our findings demonstrate that SphK1-produced S1P is a crucial mediator of breast cancer-induced hemangiogenesis and lymphangiogenesis. Our results implicate SphK1 along with S1P as therapeutic targets in breast cancer.
doi:10.1158/0008-5472.CAN-11-2167
PMCID: PMC3289261  PMID: 22298596
sphingosine kinase 1; sphingosine-1-phosphate; lymphangiogenesis; angiogenesis; lymph node metastasis
11.  Fenretinide Causes Emphysema, Which Is Prevented by Sphingosine 1-Phoshate 
PLoS ONE  2013;8(1):e53927.
Sphingolipids play a role in the development of emphysema and ceramide levels are increased in experimental models of emphysema; however, the mechanisms of ceramide-related pulmonary emphysema are not fully understood. Here we examine mechanisms of ceramide-induced pulmonary emphysema. Male Sprague-Dawley rats were treated with fenretinide (20 mg/kg BW), a synthetic derivative of retinoic acid that causes the formation of ceramide, and we postulated that the effects of fenretinide could be offset by administering sphingosine 1-phosphate (S1P) (100 µg/kg BW). Lung tissues were analyzed and mean alveolar airspace area, total length of the alveolar perimeter and the number of caspase-3 positive cells were measured. Hypoxia-inducible factor alpha (HIF-1α), vascular endothelial growth factor (VEGF) and other related proteins were analyzed by Western blot analysis. Immunohistochemical analysis of HIF-1α was also performed. Ceramide, dihydroceramide, S1P, and dihydro-S1P were measured by mass spectrometer. Chronic intraperitoneal injection of fenretinide increased the alveolar airspace surface area and increased the number of caspase-3 positive cells in rat lungs. Fenretinide also suppressed HIF-1α and VEGF protein expression in rat lungs. Concomitant injection of S1P prevented the decrease in the expression of HIF-1α, VEGF, histone deacetylase 2 (HDAC2), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2) protein expression in the lungs. S1P injection also increased phosphorylated sphingosine kinase 1. Dihydroceramide was significantly increased by fenretinide injection and S1P treatment prevented the increase in dihydroceramide levels in rat lungs. These data support the concept that increased de novo ceramide production causes alveolar septal cell apoptosis and causes emphysema via suppressing HIF-1α. Concomitant treatment with S1P normalizes the ceramide-S1P balance in the rat lungs and increases HIF-1α protein expression via activation of sphingosine kinase 1; as a consequence, S1P salvages fenretinide induced emphysema in rat lungs.
doi:10.1371/journal.pone.0053927
PMCID: PMC3543313  PMID: 23326540
12.  Imaging MALDI Mass Spectrometry of Sphingolipids Using an Oscillating Capillary Nebulizer Matrix Application System 
Matrix deposition is a critical step in tissue imaging by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). It greatly affects the quality of MALDI imaging, especially for the analytes (such as lipids) that may easily dissolve in the solvent used for the matrix application. This chapter describes the use of an oscillating capillary nebulizer (OCN) to spray small droplets of matrix aerosol onto the sample surface for improved matrix homogeneity, reduced crystal size, and controlled solvent effects. This protocol allows visualization of many different lipid species and, of particular interest, sphingolipids in tissue slices of Tay-Sachs/Sandhoff disease by imaging MALDI-MS. The structures of these lipids were identified by analysis of tissue extracts using electrospray ionization in conjunction with tandem mass spectrometry (MS/MS and MS3). These results illustrate the usefulness of tissue imaging MALDI-MS with matrix deposition by OCN for the molecular analysis in normal physiology and pathology. In addition, the observation of numerous lipid subclasses with distinct localizations in the brain slices demonstrates that imaging MALDI-MS could be effectively used for “lipidomic” studies.
doi:10.1007/978-1-60761-746-4_7
PMCID: PMC3501677  PMID: 20680588
Imaging MALDI mass spectrometry; sphingolipids; oscillating capillary nebulizer; matrix application
13.  Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca2+ - de novo ceramide - PP2A - ROS dependent signaling pathway 
Cancer research  2010;70(15):6313-6324.
The targeted therapeutics sorafenib and vorinostat interact in a synergistic fashion to kill carcinoma cells by activating CD95, and this drug combination is entering phase I evaluation. In this study we determined how CD95 is activated by treatment with this drug combination. Low doses of sorafenib and vorinostat but not the individual drugs rapidly increased ROS, Ca2+ and ceramide levels in GI tumor cells. The production of ROS was reduced in Rho zero cells. Quenching ROS blocked drug-induced CD95 surface localization and apoptosis. ROS generation, CD95 activation and cell killing was also blocked by quenching of induced Ca2+ levels or by inhibition of PP2A. Inhibition of acidic sphingomyelinase or de novo ceramide generation blocked the induction of ROS however combined inhibition of both acidic sphingomyelinase and de novo ceramide generation was required to block the induction of Ca2+. Quenching of ROS did not impact on drug-induced ceramide/dihydro-ceramide levels whereas quenching of Ca2+ reduced the ceramide increase. Sorafenib and vorinostat treatment radiosensitized liver and pancreatic cancer cells, an effect that was suppressed by quenching ROS or knock down of LASS6. Further, sorafenib and vorinostat treatment suppressed the growth of pancreatic tumors in vivo. Our findings demonstrate that induction of cytosolic Ca2+ by sorafenib and vorinostat is a primary event that elevates dihydroceramide levels, each essential steps in ROS generation that promotes CD95 activation.
doi:10.1158/0008-5472.CAN-10-0999
PMCID: PMC2918282  PMID: 20631069
14.  PERK–Dependent Regulation of Ceramide Synthase 6 and Thioredoxin Play a Key Role in mda-7/IL-24–Induced Killing of Primary Human Glioblastoma Multiforme Cells 
Cancer research  2010;70(3):1120-1129.
Melanoma differentiation associated gene-7(mda-7) encodes IL-24, a cytokine that can selectively trigger apoptosis in transformed cells. Recombinant mda-7 adenovirus (Ad.mda-7) effectively kills glioma cells, offering a novel gene therapy strategy to address deadly brain tumors. In this study, we defined the proximal mechanisms by which Ad-mda-7 kills glioma cells. Key factors implicated included activation of the endoplasmic reticulum stress kinase protein kinase R–like endoplasmic reticulum kinase (PERK), Ca++ elevation, ceramide generation and reactive oxygen species (ROS) production. PERK inhibition blocked ceramide or dihydroceramide generation, which were critical for Ca++ induction and subsequent ROS formation. Activation of autophagy and cell death relied upon ROS formation, the inhibition of which ablated Ad.mda-7–killing activity. In contrast, inhibiting TRX induced by Ad.MDA-7 enhanced tumor cytotoxicity and improved animal survival in an orthotopic tumor model. Our findings indicate that mda-7/IL-24 induces an endoplasmic reticulum stress response that triggers production of ceramide, Ca2+, and ROS, which in turn promote glioma cell autophagy and cell death.
doi:10.1158/0008-5472.CAN-09-4043
PMCID: PMC2890071  PMID: 20103619
15.  SPHINGOSINE-1-PHOSPHATE: A MISSING COFACTOR FOR THE E3 UBIQUITIN LIGASE TRAF2 
Nature  2010;465(7301):1084-1088.
TNF receptor-associated factor 2 (TRAF2) is a key component in NF-κB signaling triggered by TNF–α 1,2. Genetic evidence indicates that TRAF2 is necessary for polyubiquitination of receptor interacting protein 1 (RIP1) 3 that then serves as a platform for recruitment and stimulation of IκB kinase (IKK) leading to activation of the transcription factor NF-κB. Although TRAF2 is a RING domain ubiquitin ligase, direct evidence that TRAF2 catalyzes the ubiquitination of RIP1 is lacking. TRAF2 binds to sphingosine kinase 1 (SphK1) 4, one of the isoenzymes that generates the pro-survival lipid mediator sphingosine-1-phosphate (S1P) inside cells. Here we show that SphK1 and production of S1P is necessary for Lys 63-linked polyubiquitination of RIP1, phosphorylation of IKK and IκBα, and IκBα degradation, leading to NF-κB activation. Surprisingly, these responses were mediated by intracellular S1P independently of its cell surface G protein-coupled receptors. S1P specifically binds to TRAF2 at the N-terminal RING domain and stimulates its E3 ligase activity. S1P, but not dihydro-S1P, dramatically increased recombinant TRAF2-catalyzed Lys 63- but not Lys 48-linked polyubiquitination of RIP1 in vitro in the presence of the ubiquitin conjugating enzymes (E2) UbcH13 or UbcH5a. Our data reveal that TRAF2 is a novel intracellular target of S1P, and that S1P is the missing co-factor for TRAF2 E3 ubiquitin ligase activity, suggesting a new paradigm for regulation of Lys 63-linked polyubiquitination. These results also highlight the key role of SphK1 and its product S1P in TNF-α signaling and the canonical NF-κB activation pathway important in inflammatory, anti-apoptotic, and immune processes.
doi:10.1038/nature09128
PMCID: PMC2946785  PMID: 20577214
16.  MDA-7/IL-24–induced cell killing in malignant renal carcinoma cells occurs by a ceramide/CD95/PERK–dependent mechanism 
Molecular cancer therapeutics  2009;8(5):1280-1291.
Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) is a novel cytokine displaying selective apoptosis-inducing activity in transformed cells without harming normal cells. The present studies focused on clarifying the mechanism(s) by which glutathione S-transferase (GST)-MDA-7 altered cell survival of human renal carcinoma cells in vitro. GST-MDA-7 caused plasma membrane clustering of CD95 and the association of CD95 with procaspase-8. GST-MDA-7 lethality was suppressed by inhibition of caspase-8 or by overexpression of short-form cellular FLICE inhibitory protein, but only weakly by inhibition of cathepsin proteases. GST-MDA-7–induced CD95 clustering (and apoptosis) was blocked by knockdown of acidic sphingomyelinase or, to a greater extent, ceramide synthase-6 expression. GST-MDA-7 killing was, in parallel, dependent on inactivation of extracellular signal–regulated kinase 1/2 and on CD95-induced p38 mitogen-activated protein kinase and c-jun NH2-terminal kinase-1/2 signaling. Knockdown of CD95 expression abolished GST-MDA-7–induced phosphorylation of protein kinase R–like endoplasmic reticulum kinase. GST-MDA-7 lethality was suppressed by knockout or expression of a dominant negative protein kinase R–like endoplasmic reticulum kinase that correlated with reduced c-jun NH2-terminal kinase-1/2 and p38 mitogen-activated protein kinase signaling and maintained extracellular signal–regulated kinase-1/2 phosphorylation. GST-MDA-7 caused vacuolization of LC3 through a mechanism that was largely CD95 dependent and whose formation was suppressed by knockdown of ATG5 expression. Knockdown of ATG5 suppressed GST-MDA-7 toxicity. Our data show that in kidney cancer cells GST-MDA-7 induces ceramide-dependent activation of CD95, which is causal in promoting an endoplasmic reticulum stress response that activates multiple proapoptotic pathways to decrease survival.
doi:10.1158/1535-7163.MCT-09-0073
PMCID: PMC2889018  PMID: 19417161
17.  Kdo2-Lipid A, a TLR4-specific Agonist, Induces de Novo Sphingolipid Biosynthesis in RAW264.7 Macrophages, Which Is Essential for Induction of Autophagy* 
The Journal of Biological Chemistry  2010;285(49):38568-38579.
Activation of RAW264.7 cells with a lipopolysaccharide specific for the TLR4 receptor, Kdo2-lipid A (KLA), causes a large increase in cellular sphingolipids, from 1.5 to 2.6 × 109 molecules per cell in 24 h, based on the sum of subspecies analyzed by “lipidomic” mass spectrometry. Thus, this study asked the following question. What is the cause of this increase and is there a cell function connected with it? The sphingolipids arise primarily from de novo biosynthesis based on [U-13C]palmitate labeling, inhibition by ISP1 (myriocin), and an apparent induction of many steps of the pathway (according to the distribution of metabolites and microarray analysis), with the exception of ceramide, which is also produced from pre-existing sources. Nonetheless, the activated RAW264.7 cells have a higher number of sphingolipids per cell because KLA inhibits cell division; thus, the cells are larger and contain increased numbers of membrane vacuoles termed autophagosomes, which were detected by the protein marker GFP-LC3. Indeed, de novo biosynthesis of sphingolipids performs an essential structural and/or signaling function in autophagy because autophagosome formation was eliminated by ISP1 in KLA-stimulated RAW264.7 cells (and mutation of serine palmitoyltransferase in CHO-LYB cells); furthermore, an anti-ceramide antibody co-localizes with autophagosomes in activated RAW264.7 cells versus the Golgi in unstimulated or ISP1-inhibited cells. These findings establish that KLA induces profound changes in sphingolipid metabolism and content in this macrophage-like cell line, apparently to produce sphingolipids that are necessary for formation of autophagosomes, which are thought to play important roles in the mechanisms of innate immunity.
doi:10.1074/jbc.M110.170621
PMCID: PMC2992289  PMID: 20876532
Autophagy; Lipopolysaccharide (LPS); Macrophage; Mass Spectrometry (MS); Sphingolipid; Ceramide; Kdo2-Lipid A
18.  SPHINGOLIPIDOMICS: METHODS FOR THE COMPREHENSIVE ANALYSIS OF SPHINGOLIPIDS 
Sphingolipids comprise a highly diverse and complex class of molecules that serve as both structural components of cellular membranes and signaling molecules capable of eliciting apoptosis, differentiation, chemotaxis, and other responses in mammalian cells. Comprehensive or “sphingolipidomic” analyses (structure specific, quantitative analyses of all sphingolipids, or at least all members of a critical subset) are required in order to elucidate the role(s) of sphingolipids in a given biological context because so many of the sphingolipids in a biological system are inter-converted structurally and metabolically. Despite the experimental challenges posed by the diversity of sphingolipid-regulated cellular responses, the detection and quantitation of multiple sphingolipids in a single sample has been made possible by combining classical analytical separation techniques such as high-performance liquid chromatography (HPLC) with state-of-the-art tandem mass spectrometry (MS/MS) techniques. As part of the Lipid MAPS consortium an internal standard cocktail was developed that comprises the signaling metabolites (i.e. sphingoid bases, sphingoid base-1-phosphates, ceramides, and ceramide-1-phosphates) as well as more complex species such as mono- and di-hexosylceramides and sphingomyelin. Additionally, the number of species that can be analyzed is growing rapidly with the addition of fatty acyl Co-As, sulfatides, and other complex sphingolipids as more internal standards are becoming available. The resulting LC-MS/MS analyses are one of the most analytically rigorous technologies that can provide the necessary sensitivity, structural specificity, and quantitative precision with high-throughput for “sphingolipidomic” analyses in small sample quantities. This review summarizes historical and state-of-the-art analytical techniques used for the for the identification, structure determination, and quantitation of sphingolipids from free sphingoid bases through more complex sphingolipids such as sphingomyelins, lactosylceramides, and sulfatides including those intermediates currently considered sphingolipid “second messengers”. Also discussed are some emerging techniques and other issues remaining to be resolved for the analysis of the full sphingolipidome.
doi:10.1016/j.jchromb.2008.12.057
PMCID: PMC2765038  PMID: 19147416
Sphingolipids; analysis; mass spectrometry; tandem mass spectrometry; liquid chromatography; electrospray; nanospray; MALDI
19.  TARGETING SPHINGOSINE KINASE 1 INHIBITS AKT SIGNALING, INDUCES APOPTOSIS, AND SUPPRESSES GROWTH OF HUMAN GLIOBLASTOMA CELLS AND XENOGRAFTS 
Cancer research  2009;69(17):6915-6923.
Sphingosine-1-phosphate (S1P) is a potent sphingolipid mediator of diverse processes important for brain tumors, including cell growth, survival, migration, invasion, and angiogenesis. Sphingosine kinase 1 (SphK1), one of the two isoenzymes that produce S1P, is upregulated in glioblastoma and has been linked to poor prognosis in patients with glioblastoma multiforme (GBM). In the present study, we found that a potent isotype-specific SphK1 inhibitor, SK1-I, suppressed growth of LN229 and U373 glioblastoma cell lines and non-established human GBM6 cells. SK1-I also enhanced GBM cell death and inhibited their migration and invasion. SK1-I rapidly reduced phosphorylation of Akt but had no significant effect on activation of ERK1/2, another important survival pathway for GBM. Inhibition of the concomitant activation of the JNK pathway induced by SK1-I attenuated death of GBM cells. Importantly, SK1-I markedly reduced tumor growth rate of glioblastoma xenografts, inducing apoptosis and reducing tumor vascularization and enhanced the survival of mice harboring LN229 intracranial tumors. Our results support the notion that SphK1 may be an important factor in GBM and suggest that an isozyme-specific inhibitor of SphK1 deserves consideration as a new therapeutic agent for this disease.
doi:10.1158/0008-5472.CAN-09-0664
PMCID: PMC2752891  PMID: 19723667
sphingosine-1-phosphate; sphingosine kinase type 1; glioblastoma; Akt
20.  Regulation of Histone Acetylation in the Nucleus by Sphingosine-1-Phosphate 
Science (New York, N.Y.)  2009;325(5945):1254-1257.
The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) can act intracellularly independently of its cell surface receptors through unknown mechanisms. Sphingosine kinase 2 (SphK2), one of the isoenzymes that generates S1P, was associated with histone H3 and produced S1P that regulated histone acetylation. S1P specifically bound to the histone deacetylases HDAC1 and HDAC2 and inhibited their enzymatic activity, preventing the removal of acetyl groups from lysine residues within histone tails. SphK2 associated with HDAC1 and HDAC2 in repressor complexes and was selectively enriched at the promoters of the genes encoding the cyclin-dependent kinase inhibitor p21 or the transcriptional regulator c-fos, where it enhanced local histone H3 acetylation and transcription. Thus, HDACs are direct intracellular targets of S1P and link nuclear S1P to epigenetic regulation of gene expression.
doi:10.1126/science.1176709
PMCID: PMC2850596  PMID: 19729656
21.  Cyclic AMP-Stimulated Interaction between Steroidogenic Factor 1 and Diacylglycerol Kinase θ Facilitates Induction of CYP17▿  
Molecular and Cellular Biology  2007;27(19):6669-6685.
In the human adrenal cortex, adrenocorticotropin (ACTH) activates CYP17 transcription by promoting the binding of the nuclear receptor steroidogenic factor 1 (SF1) (Ad4BP, NR5A1) to the promoter. We recently found that sphingosine is an antagonist for SF1 and inhibits cyclic AMP (cAMP)-dependent CYP17 gene transcription. The aim of the current study was to identify phospholipids that bind to SF1 and to characterize the mechanism by which ACTH/cAMP regulates the biosynthesis of this molecule(s). Using tandem mass spectrometry, we show that in H295R human adrenocortical cells, SF1 is bound to phosphatidic acid (PA). Activation of the ACTH/cAMP signal transduction cascade rapidly increases nuclear diacylglycerol kinase (DGK) activity and PA production. PA stimulates SF1-dependent transcription of CYP17 reporter plasmids, promotes coactivator recruitment, and induces the mRNA expression of CYP17 and several other steroidogenic genes. Inhibition of DGK activity attenuates the binding of SF1 to the CYP17 promoter, and silencing of DGK-θ expression inhibits cAMP-dependent CYP17 transcription. LXXLL motifs in DGK-θ mediate a direct interaction of SF1 with the kinase and may facilitate binding of PA to the receptor. We conclude that ACTH/cAMP stimulates PA production in the nucleus of H295R cells and that this increase in PA concentrations facilitates CYP17 induction.
doi:10.1128/MCB.00355-07
PMCID: PMC2099220  PMID: 17664281
23.  Mutation of β-glucosidase 2 causes glycolipid storage disease and impaired male fertility  
Journal of Clinical Investigation  2006;116(11):2985-2994.
β-Glucosidase 2 (GBA2) is a resident enzyme of the endoplasmic reticulum thought to play a role in the metabolism of bile acid–glucose conjugates. To gain insight into the biological function of this enzyme and its substrates, we generated mice deficient in GBA2 and found that these animals had normal bile acid metabolism. Knockout males exhibited impaired fertility. Microscopic examination of sperm revealed large round heads (globozoospermia), abnormal acrosomes, and defective mobility. Glycolipids, identified as glucosylceramides by mass spectrometry, accumulated in the testes, brains, and livers of the knockout mice but did not cause obvious neurological symptoms, organomegaly, or a reduction in lifespan. Recombinant GBA2 hydrolyzed glucosylceramide to glucose and ceramide; the same reaction catalyzed by the β-glucosidase acid 1 (GBA1) defective in subjects with the Gaucher’s form of lysosomal storage disease. We conclude that GBA2 is a glucosylceramidase whose loss causes accumulation of glycolipids and an endoplasmic reticulum storage disease.
doi:10.1172/JCI29224
PMCID: PMC1626112  PMID: 17080196
24.  Glucosylceramide synthase is an essential regulator of pathogenicity of Cryptococcus neoformans  
Journal of Clinical Investigation  2006;116(6):1651-1659.
The pathogenic fungus Cryptococcus neoformans infects humans upon inhalation and causes the most common fungal meningoencephalitis in immunocompromised subjects worldwide. In the host, C. neoformans is found both intracellularly and extracellularly, but how these two components contribute to the development of the disease is largely unknown. Here we show that the glycosphingolipid glucosylceramide (GlcCer), which is present in C. neoformans, was essential for fungal growth in host extracellular environments, such as in alveolar spaces and in the bloodstream, which are characterized by a neutral/alkaline pH, but not in the host intracellular environment, such as in the phagolysosome of macrophages, which is characteristically acidic. Indeed, a C. neoformans mutant strain lacking GlcCer did not grow in vitro at a neutral/alkaline pH, yet it had no growth defect at an acidic pH. The mechanism by which GlcCer regulates alkali tolerance was by allowing the transition of C. neoformans through the cell cycle. This study establishes C. neoformans GlcCer as a key virulence factor of cryptococcal pathogenicity, with important implications for future development of new antifungal strategies.
doi:10.1172/JCI27890
PMCID: PMC1466548  PMID: 16741577

Results 1-24 (24)