PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-5 (5)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
author:("Cho, cheil H.")
1.  Vacuum-assisted Fluid Flow in Microchannels to Pattern Substrates and Cells 
Biofabrication  2014;6(3):035016.
Substrate and cell patterning are widely used techniques in cell biology to study cell-to-cell and cell-to-substrate interactions. Conventional patterning techniques work well only with simple shapes, small areas and selected bio-materials. This paper describes a method to distribute cell suspensions as well as substrate solutions into complex, long, closed (dead-end) polydimethylsiloxane (PDMS) microchannels using negative pressure. Our method builds upon a previous vacuum-assisted method used for micromolding (Jeon, Choi et al. 1999) and successfully patterned collagen-I, fibronectin and Sal-1 substrates on glass and polystyrene surfaces, filling microchannels with lengths up to 120 mm and covering areas up to 13 × 10 mm2. Vacuum-patterned substrates were subsequently used to culture mammalian PC12 and fibroblast cells and amphibian neurons. Cells were also patterned directly by injecting cell suspensions into microchannels using vacuum. Fibroblast and neuronal cells patterned using vacuum showed normal growth and minimal cell death indicating no adverse effects of vacuum on cells. Our method fills reversibly sealed PDMS microchannels. This enables the user to remove the PDMS microchannel cast and access the patterned biomaterial or cells for further experimental purposes. Overall, this is a straightforward technique that has broad applicability for cell biology.
doi:10.1088/1758-5082/6/3/035016
PMCID: PMC4226435  PMID: 24989641
Substrate patterning; cell patterning; soft lithography; microfluidic device; vacuum-assisted microchannel filling
2.  A New Technique for Primary Hepatocyte Expansion In Vitro 
Biotechnology and bioengineering  2008;101(2):345-356.
The current application for many potential cell-based treatments for liver failure is limited by the low availability of mature functional hepatocytes. Although adult hepatocytes have a remarkable ability to proliferate in vivo, attempts to proliferate adult hepatocytes in vitro have been less successful. In this study, we investigated the effect of coculture cell type on the proliferative response and the functional activities of hepatocytes. We show, for the first time, a robust proliferative response of primary adult rat hepatocytes when cocultured with mouse 3T3-J2 fibroblasts. Hepatocytes cultured at low density on growth-arrested 3T3-J2 fibroblast feeder layers underwent significantly higher proliferation rates than when cultured on feeder layers made of four other cell types. Increasing colony size correlated with an increase in hepatocellular functions. The proliferating hepatocytes retained their morphologic, phenotypic, and functional characteristics. Using a cell patterning technique, we found that 3T3-J2 fibroblasts stimulate DNA synthesis in hepatocytes by short-range heterotypic cell–cell interactions. When hepatocytes that proliferated in cocultures were harvested and further subcultured either on 3T3-J2 fibroblast feeders or in the collagen sandwich configuration, their behavior was similar to that of freshly isolated hepatocytes. We conclude that adult rat hepatocytes can proliferate in vitro in a coculture cell type-dependent manner, and can be serially propagated by coculturing with 3T3-J2 fibroblasts while maintaining their differentiated characteristics. Our results also suggest that one of the major reasons for the functional differences in hepatocyte cocultures may be due to the different proliferative responses of hepatocytes as a function of coculture cell type. This study provides new insights in the roles of coculture cell types and cell–cell interactions in the modulation of hepatic proliferation and function.
doi:10.1002/bit.21911
PMCID: PMC4487520  PMID: 18465801
hepatocyte proliferation; coculture; DNA synthesis; cell patterning; subculture
3.  Improvements in biomaterial matrices for neural precursor cell transplantation 
Progress is being made in developing neuroprotective strategies for traumatic brain injuries; however, there will never be a therapy that will fully preserve neurons that are injured from moderate to severe head injuries. Therefore, to restore neurological function, regenerative strategies will be required. Given the limited regenerative capacity of the resident neural precursors of the CNS, many investigators have evaluated the regenerative potential of transplanted precursors. Unfortunately, these precursors do not thrive when engrafted without a biomaterial scaffold. In this article we review the types of natural and synthetic materials that are being used in brain tissue engineering applications for traumatic brain injury and stroke. We also analyze modifications of the scaffolds including immobilizing drugs, growth factors and extracellular matrix molecules to improve CNS regeneration and functional recovery. We conclude with a discussion of some of the challenges that remain to be solved towards repairing and regenerating the brain.
doi:10.1186/2052-8426-2-19
PMCID: PMC4452047  PMID: 26056586
Tissue engineering; Neural stem cells; Scaffold; Biomaterials; CNS; Brain injury; TBI; Stroke; Transplantation; Review
4.  Layered patterning of hepatocytes in co-culture systems using microfabricated stencils 
BioTechniques  2010;48(1):47-52.
Microfabrication and micropatterning techniques in tissue engineering offer great potential for creating and controlling microenvironments in which cell behavior can be observed. Here we present a novel approach to generate layered patterning of hepatocytes on micropatterned fibroblast feeder layers using microfabricated polydimethylsiloxane (PDMS) stencils. We fabricated PDMS stencils to pattern circular holes with diameters of 500 µm. Hepatocytes were co-cultured with 3T3-J2 fibroblasts in two types of patterns to evaluate and characterize the cellular interactions in the co-culture systems. Results of this study demonstrated uniform intracellular albumin staining and E-cadherin expression, increased liver-specific functions, and active glycogen synthesis in the hepatocytes when the heterotypic interface between hepatocytes and fibroblasts was increased by the layered patterning technique. This patterning technique can be a useful experimental tool for applications in basic science, drug screening, and tissue engineering, as well as in the design of bioartificial liver devices.
doi:10.2144/000113317
PMCID: PMC3147300  PMID: 20078427
hepatocytes; co-culture; layered cell patterning; cellular interactions; fibroblasts
5.  Activin Alters the Kinetics of Endoderm Induction in Embryonic Stem Cells Cultured on Collagen Gels 
Stem cells (Dayton, Ohio)  2007;26(2):474-484.
Embryonic stem cell-derived endoderm is critical for the development of cellular therapies for the treatment of disease such as diabetes, liver cirrhosis, or pulmonary emphysema. Here, we describe a novel approach to induce endoderm from mouse embryonic stem cells (mES) using fibronectin-coated collagen gels. This technique results in a homogenous endoderm-like cell population, demonstrating endoderm-specific gene and protein expression, which remains committed following in vivo transplantation. In this system, activin, normally an endoderm inducer caused an 80% decrease in the Foxa2 positive endoderm fraction, while follistatin increased the Foxa2 positive endoderm fraction to 78%. Our work suggests that activin delays the induction of endoderm through it transient precursors, the epiblast and mesendoderm. Long term differentiation, displays a two-fold reduction in hepatic gene expression and three-fold reduction in hepatic protein expression of activin-treated cells compared to follistatin-treated cells. Moreover, subcutaneous transplantation of activin-treated cells in a syngeneic mouse generated a heterogeneous teratoma-like mass, suggesting these were a more primitive population. In contrast, follistatin-treated cells resulted in an encapsulated epithelial-like mass, suggesting these cells remained committed to the endoderm lineage. In conclusion, we demonstrate a novel technique to induce the direct differentiation of endoderm from mES cells without cell sorting. In addition, our work suggests a new role for activin in induction of the precursors to endoderm, and a new endoderm-enrichment technique using follistatin.
doi:10.1634/stemcells.2007-0303
PMCID: PMC2802581  PMID: 18065398
Activin; Endoderm; Collagen Gel; Embryonic Stem Cells (Mouse); Follistatin; Epiblast

Results 1-5 (5)