Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  DAT by perceived MC interaction on human prefrontal activity and connectivity during emotion processing 
Background: Maternal care (MC) and dopamine modulate brain activity during emotion processing in inferior frontal gyrus (IFG), striatum and amygdala. Reuptake of dopamine from the synapse is performed by the dopamine transporter (DAT), whose abundance is predicted by variation in its gene (DAT 3′VNTR; 10 > 9-repeat alleles). Here, we investigated the interaction between perceived MC and DAT 3′VNTR genotype on brain activity during processing of aversive facial emotional stimuli.
Methods: Sixty-one healthy subjects were genotyped for DAT 3′VNTR and categorized in low and high MC individuals. They underwent functional magnetic resonance imaging while performing a task requiring gender discrimination of facial stimuli with angry, fearful or neutral expressions.
Results: An interaction between facial expression, DAT genotype and MC was found in left IFG, such that low MC and homozygosity for the 10-repeat allele are associated with greater activity during processing of fearful faces. This greater activity was also inversely correlated with a measure of emotion control as scored with the Big Five Questionnaire. Moreover, MC and DAT genotype described a double dissociation on functional connectivity between IFG and amygdala.
Conclusion: These findings suggest that perceived early parental bonding may interact with DAT 3′VNTR genotype in modulating brain activity during emotionally relevant inputs.
PMCID: PMC3831553  PMID: 22842906
emotion; dopamine; maternal care; fMRI; amygdala; inferior frontal gyrus
2.  Differential effects of common variants in SCN2A on general cognitive ability, brain physiology and mRNA expression in schizophrenia cases and controls 
JAMA psychiatry  2014;71(6):647-656.
One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation.
To identify single nucleotide polymorphisms associated with general cognitive ability (“g”) in people with schizophrenia and controls.
Genome-wide association study (GWAS), followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in post-mortem brain samples.
The discovery cohort and unaffected siblings were participants in the NIMH Clinical Brain Disorders Branch schizophrenia genetics studies. Additional schizophrenia cohorts were from psychiatric treatment settings in the United States, Japan, and Germany.
The discovery cohort comprised 339 with schizophrenia and 363 community controls. Follow-up analyses studied 147 unaffected siblings of the schizophrenia cases, and independent schizophrenia samples of 279, 95 and 294 participants. Imaging analyses included 87 schizophrenia cases and 397 controls. Brain tissue samples were available for 64 cases and 61 controls.
Main Outcome Measures
We studied genome-wide association with g, by group, in the discovery cohort. We used selected genotypes to test specific associations in unaffected siblings and independent schizophrenia samples. Imaging analyses focused on activation in prefrontal cortex during working memory. Brain tissue studies yielded mRNA expression levels for RefSeq transcripts.
The schizophrenia discovery cohort showed GWAS-significant association of g with polymorphisms in sodium channel gene SCN2A, accounting for 10.4% of g variance (rs10174400, P=9.27×10−10). Controls showed a trend for g/genotype association with reversed allelic directionality. The genotype-by-group interaction was also GWAS-significant (P=1.75×10−9). Siblings showed a genotype association with g parallel to the schizophrenia group, and the same interaction pattern. Parallel, but weaker, associations with cognition were found in independent schizophrenia samples. Imaging analyses showed a similar pattern of genotype associations by group and genotype-by-group interaction. RNA sequencing revealed reduced expression in 2 of 3 SCN2A alternative transcripts in the patient group, with genotype-by-group interaction, that again paralleled the cognition effects.
The findings implicate SCN2A and sodium channel biology in cognitive impairment in schizophrenia cases and unaffected relatives, and may facilitate development of cognition-enhancing treatments.
PMCID: PMC4160812  PMID: 24718902
3.  Expression of DISC1-Interactome Members Correlates with Cognitive Phenotypes Related to Schizophrenia 
PLoS ONE  2014;9(6):e99892.
Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.
PMCID: PMC4062455  PMID: 24940743
4.  DRD2 Genotype-Based Variation of Default Mode Network Activity and of Its Relationship With Striatal DAT Binding 
Schizophrenia Bulletin  2011;39(1):206-216.
The default mode network (DMN) comprises a set of brain regions with “increased” activity during rest relative to cognitive processing. Activity in the DMN is associated with functional connections with the striatum and dopamine (DA) levels in this brain region. A functional single-nucleotide polymorphism within the dopamine D2 receptor gene (DRD2, rs1076560 G > T) shifts splicing of the 2 D2 isoforms, D2 short and D2 long, and has been associated with striatal DA signaling as well as with cognitive processing. However, the effects of this polymorphism on DMN have not been explored. The aim of this study was to evaluate the effects of rs1076560 on DMN and striatal connectivity and on their relationship with striatal DA signaling. Twenty-eight subjects genotyped for rs1076560 underwent functional magnetic resonance imaging during a working memory task and 123 55 I-Fluoropropyl-2-beta-carbomethoxy-3-beta(4-iodophenyl) nortropan Single Photon Emission Computed Tomography ([123I]-FP-CIT SPECT) imaging (a measure of dopamine transporter [DAT] binding). Spatial group-independent component (IC) analysis was used to identify DMN and striatal ICs. Within the anterior DMN IC, GG subjects had relatively greater connectivity in medial prefrontal cortex (MPFC), which was directly correlated with striatal DAT binding. Within the posterior DMN IC, GG subjects had reduced connectivity in posterior cingulate relative to T carriers. Additionally, rs1076560 genotype predicted connectivity differences within a striatal network, and these changes were correlated with connectivity in MPFC and posterior cingulate within the DMN. These results suggest that genetically determined D2 receptor signaling is associated with DMN connectivity and that these changes are correlated with striatal function and presynaptic DA signaling.
PMCID: PMC3523900  PMID: 21976709
DRD2; dopamine; default mode network; functional magnetic resonance imaging; single-photon emission computerized tomography
5.  Prefronto-striatal physiology is associated with schizotypy and is modulated by a functional variant of DRD2 
“Schizotypy” is a latent organization of personality related to the genetic risk for schizophrenia. Some evidence suggests that schizophrenia and schizotypy share some biological features, including a link to dopaminergic D2 receptor signaling. A polymorphism in the D2 gene (DRD2 rs1076560, guanine > thymine (G > T)) has been associated with the D2 short/long isoform expression ratio, as well as striatal dopamine signaling and prefrontal cortical activity during different cognitive operations, which are measures that are altered in patients with schizophrenia. Our aim is to determine the association of schizotypy scores with the DRD2 rs1076560 genotype in healthy individuals and their interaction with prefrontal activity during attention and D2 striatal signaling. A total of 83 healthy subjects were genotyped for DRD2 rs1076560 and completed the Schizotypal Personality Questionnaire (SPQ). Twenty-six participants underwent SPECT with [123I]IBZM D2 receptor radiotracer, while 68 performed an attentional control task during fMRI. We found that rs1076560 GT subjects had greater SPQ scores than GG individuals. Moreover, the interaction between schizotypy and the GT genotype predicted prefrontal activity and related attentional behavior, as well as striatal binding of IBZM. No interaction was found in GG individuals. These results suggest that rs1076560 GT healthy individuals are prone to higher levels of schizotypy, and that the interaction between rs1076560 and schizotypy scores modulates phenotypes related to the pathophysiology of schizophrenia, such as prefrontal activity and striatal dopamine signaling. These results provide systems-level qualitative evidence for mapping the construct of schizotypy in healthy individuals onto the schizophrenia continuum.
PMCID: PMC4089730  PMID: 25071490
schizotypy; dopamine; DRD2; fMRI; SPECT
6.  Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans 
Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2, rs1076560, guanine>thymine - G>T) shifts splicing of the two protein isoforms (D2 short, D2S, mainly presynaptic, and D2 long, D2L) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced ‘emotion control’ compared with GT subjects. fMRI in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.
PMCID: PMC2834475  PMID: 19940176
amygdala; DRD2; dopamine; emotion; fMRI; prefrontal cortex
7.  Genetically Determined Measures of Striatal D2 Signaling Predict Prefrontal Activity during Working Memory Performance 
PLoS ONE  2010;5(2):e9348.
Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.
Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory.
Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.
Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.
PMCID: PMC2825256  PMID: 20179754
8.  Genetically determined interaction between the dopamine transporter and the D2 receptor on prefronto-striatal activity and volume in humans 
Dopamine modulation of neuronal activity during memory tasks identifies a non-linear inverted-U shaped function. Both the dopamine transporter (DAT) and dopamine D2 receptors (encoded by DRD2) critically regulate dopamine signaling in the striatum and in prefrontal cortex during memory. Moreover, in vitro studies have demonstrated that DAT and D2 proteins reciprocally regulate each other presynaptically. Therefore, we have evaluated the genetic interaction between a DRD2 polymorphism (rs1076560) causing reduced presynaptic D2 receptor expression and the DAT 3’-VNTR variant (affecting DAT expression) in a large sample of healthy subjects undergoing BOLD - fMRI during memory tasks and structural MRI. Results indicated a significant DRD2/DAT interaction in prefrontal cortex and striatum BOLD activity during both working memory and encoding of recognition memory. The differential effect on BOLD activity of the DAT variant was mostly manifest in the context of the DRD2 allele associated with lower presynaptic expression. Similar results were also evident for gray matter volume in caudate. These interactions describe a non-linear relationship between compound genotypes and brain activity or gray matter volume. Complementary data from striatal protein extracts from wild-type and D2 knock-out animals (D2R−/−) indicate that DAT and D2 proteins interact in vivo. Taken together, our results demonstrate that the interaction between genetic variants in DRD2 and DAT critically modulates the non-linear relationship between dopamine and neuronal activity during memory processing.
PMCID: PMC2686116  PMID: 19176830
working memory; Recognition Memory; FMRI; Dopamine; Transport; D2; Receptor

Results 1-8 (8)