PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Functional variation of the dopamine D2 receptor gene is associated with emotional control as well as brain activity and connectivity during emotion processing in humans 
Personality traits related to emotion processing are, at least in part, heritable and genetically determined. Dopamine D2 receptor signaling is involved in modulation of emotional behavior and activity of associated brain regions such as the amygdala and the prefrontal cortex. An intronic single nucleotide polymorphism within the D2 receptor gene (DRD2, rs1076560, guanine>thymine - G>T) shifts splicing of the two protein isoforms (D2 short, D2S, mainly presynaptic, and D2 long, D2L) and has been associated with modulation of memory performance and brain activity. Here, our aim was to investigate the association of DRD2 rs1076560 genotype with personality traits of emotional stability and with brain physiology during processing of emotionally relevant stimuli. DRD2 genotype and Big Five Questionnaire scores were evaluated in 134 healthy subjects demonstrating that GG subjects have reduced ‘emotion control’ compared with GT subjects. fMRI in a sample of 24 individuals indicated greater amygdala activity during implicit processing and greater dorsolateral prefrontal cortex (DLPFC) response during explicit processing of facial emotional stimuli in GG subjects compared with GT. Other results also demonstrate an interaction between DRD2 genotype and facial emotional expression on functional connectivity of both amygdala and dorsolateral prefrontal regions with overlapping medial prefrontal areas. Moreover, rs1076560 genotype is associated with differential relationships between amygdala/DLPFC functional connectivity and emotion control scores. These results suggest that genetically determined D2 signaling may explain part of personality traits related to emotion processing and individual variability in specific brain responses to emotionally relevant inputs.
doi:10.1523/JNEUROSCI.3609-09.2009
PMCID: PMC2834475  PMID: 19940176
amygdala; DRD2; dopamine; emotion; fMRI; prefrontal cortex
2.  Genetically Determined Measures of Striatal D2 Signaling Predict Prefrontal Activity during Working Memory Performance 
PLoS ONE  2010;5(2):e9348.
Background
Variation of the gene coding for D2 receptors (DRD2) has been associated with risk for schizophrenia and with working memory deficits. A functional intronic SNP (rs1076560) predicts relative expression of the two D2 receptors isoforms, D2S (mainly pre-synaptic) and D2L (mainly post-synaptic). However, the effect of functional genetic variation of DRD2 on striatal dopamine D2 signaling and on its correlation with prefrontal activity during working memory in humans is not known.
Methods
Thirty-seven healthy subjects were genotyped for rs1076560 (G>T) and underwent SPECT with [123I]IBZM (which binds primarily to post-synaptic D2 receptors) and with [123I]FP-CIT (which binds to pre-synaptic dopamine transporters, whose activity and density is also regulated by pre-synaptic D2 receptors), as well as BOLD fMRI during N-Back working memory.
Results
Subjects carrying the T allele (previously associated with reduced D2S expression) had striatal reductions of [123I]IBZM and of [123I]FP-CIT binding. DRD2 genotype also differentially predicted the correlation between striatal dopamine D2 signaling (as identified with factor analysis of the two radiotracers) and activity of the prefrontal cortex during working memory as measured with BOLD fMRI, which was positive in GG subjects and negative in GT.
Conclusions
Our results demonstrate that this functional SNP within DRD2 predicts striatal binding of the two radiotracers to dopamine transporters and D2 receptors as well as the correlation between striatal D2 signaling with prefrontal cortex activity during performance of a working memory task. These data are consistent with the possibility that the balance of excitatory/inhibitory modulation of striatal neurons may also affect striatal outputs in relationship with prefrontal activity during working memory performance within the cortico-striatal-thalamic-cortical pathway.
doi:10.1371/journal.pone.0009348
PMCID: PMC2825256  PMID: 20179754

Results 1-2 (2)