Search tips
Search criteria

Results 1-2 (2)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
1.  An Italian functional genomic resource for Medicago truncatula 
BMC Research Notes  2008;1:129.
Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes.
Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States.
PMCID: PMC2633015  PMID: 19077311
2.  Do pathogen-specific defense mechanisms contribute to wound-induced resistance in tomato? 
Plant Signaling & Behavior  2008;3(5):340-341.
A network of shared intermediates/components and/or common molecular outputs in biotic and abiotic stress signaling has long been known, but the possibility of effective influence between differently triggered stresses (co-protection) is less studied. Recent observations show that wounding induces transient protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles, locally and systemically. The contribution of ethylene (ET) in basal but also in wound-induced resistance to each pathogen, although dispensable, is demonstrated to be positive (Botrytis cinerea, Phytophthora capsici) or negative (Fusarium oxysporum, Pseudomonas syringae pv. tomato). Furthermore, the expression of several defense markers is influenced locally and/or systemically by wounding and ET, and might be part of that core of conserved molecular responses whereby an abiotic stress such as wounding imparts co-resistance to biotic stress. In this addendum, we speculate on some of the physiological responses to wounding that might contribute to the modulation of resistance in a more pathogen-specific manner.
PMCID: PMC2634277  PMID: 19841665
tomato; phytophthora; fusarium; wounding; ethylene; defense mechanisms; electric fields; zoospores; tylosis

Results 1-2 (2)