PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-3 (3)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
Year of Publication
Document Types
1.  Designing a Multicellular Organotypic 3D Liver Model with a Detachable, Nanoscale Polymeric Space of Disse 
Tissue Engineering. Part C, Methods  2013;19(11):875-884.
The design of in vitro models that mimic the stratified multicellular hepatic microenvironment continues to be challenging. Although several in vitro hepatic cultures have been shown to exhibit liver functions, their physiological relevance is limited due to significant deviation from in vivo cellular composition. We report the assembly of a novel three-dimensional (3D) organotypic liver model incorporating three different cell types (hepatocytes, liver sinusoidal endothelial cells, and Kupffer cells) and a polymeric interface that mimics the Space of Disse. The nanoscale interface is detachable, optically transparent, derived from self-assembled polyelectrolyte multilayers, and exhibits a Young's modulus similar to in vivo values for liver tissue. Only the 3D liver models simultaneously maintain hepatic phenotype and elicit proliferation, while achieving cellular ratios found in vivo. The nanoscale detachable polymeric interfaces can be modulated to mimic basement membranes that exhibit a wide range of physical properties. This facile approach offers a versatile new avenue in the assembly of engineered tissues. These results demonstrate the ability of the tri-cellular 3D cultures to serve as an organotypic hepatic model that elicits proliferation and maintenance of phenotype and in vivo-like cellular ratios.
doi:10.1089/ten.tec.2012.0700
PMCID: PMC3793659  PMID: 23556413
2.  Polyelectrolyte Multilayers in Tissue Engineering 
The layer-by-layer assembly of sequentially adsorbed, alternating polyelectrolytes has become increasingly important over the past two decades. The ease and versatility in assembling polyelectrolyte multilayers (PEMs) has resulted in numerous wide ranging applications of these materials. More recently, PEMs are being used in biological applications ranging from biomaterials, tissue engineering, regenerative medicine, and drug delivery. The ability to manipulate the chemical, physical, surface, and topographical properties of these multilayer architectures by simply changing the pH, ionic strength, thickness, and postassembly modifications render them highly suitable to probe the effects of external stimuli on cellular responsiveness. In the field of regenerative medicine, the ability to sequester growth factors and to tether peptides to PEMs has been exploited to direct the lineage of progenitor cells and to subsequently maintain a desired phenotype. Additional novel applications include the use of PEMs in the assembly of three-dimensional layered architectures and as coatings for individual cells to deliver tunable payloads of drugs or bioactive molecules. This review focuses on literature related to the modulation of chemical and physical properties of PEMs for tissue engineering applications and recent research efforts in maintaining and directing cellular phenotype in stem cell differentiation.
doi:10.1089/ten.teb.2010.0548
PMCID: PMC3062467  PMID: 21210759
3.  The Design of In Vitro Liver Sinusoid Mimics Using Chitosan–Hyaluronic Acid Polyelectrolyte Multilayers 
Tissue Engineering. Part A  2010;16(9):2731-2741.
Interactions between hepatocytes and liver sinusoidal endothelial cells (LSECs) are essential for the development and maintenance of hepatic phenotypic functions. We report the assembly of three-dimensional liver sinusoidal mimics comprised of primary rat hepatocytes, LSECs, and an intermediate chitosan–hyaluronic acid polyelectrolyte multilayer (PEM). The height of the PEMs ranged from 30 to 55 nm and exhibited a shear modulus of ∼100 kPa. Hepatocyte–PEM cellular constructs exhibited stable urea and albumin production over a 7-day period, and these values were either higher or similar to cells cultured in a collagen sandwich. This is of significance because the thickness of a collagen gel is ∼1000-fold higher than the height of the chitosan–hyaluronic acid PEM. In the hepatocyte–PEM–LSEC liver-mimetic cellular constructs, LSEC phenotype was maintained, and these cultures exhibited stable urea and albumin production. CYP1A1/2 activity measured over a 7-day period was significantly higher in the hepatocyte–PEM–LSEC constructs than in collagen sandwich cultures. A 16-fold increase in CYP1A1/2 activity was observed for hepatocyte–PEM–10,000 LSEC samples, thereby suggesting that interactions between hepatocytes and LSECs are critical in enhancing the detoxification capability in hepatic cultures in vitro.
doi:10.1089/ten.tea.2009.0695
PMCID: PMC2928042  PMID: 20491586

Results 1-3 (3)