PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-16 (16)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
author:("Yoon, Joo-hen")
1.  Frontal Sinus Lymphoma Presenting As Progressive Multiple Cranial Nerve Palsy 
Yonsei Medical Journal  2011;52(6):1044-1047.
Primary frontal sinus lymphoma is a very uncommon disease. In all the previously reported cases, the presenting symptoms have been due to the tumor mass effect. We present an unusual case report of an immunocompetent patient who presented with facial palsy, and then progressively developed other cranial nerve palsies over several months. He was later diagnosed with diffuse large B cell lymphoma originating from the frontal sinus. The patient underwent chemotherapy, but eventually had to receive autologous peripheral blood stem cell transplantation. He is currently disease-free. The clinical course, diagnostic workup, and therapeutic outcome are described.
doi:10.3349/ymj.2011.52.6.1044
PMCID: PMC3220265  PMID: 22028175
Frontal sinus; lymphoma; multiple cranial nerve palsy
2.  Optic Nerve Injury Secondary to Endoscopic Sinus Surgery: an Analysis of Three Cases 
Yonsei Medical Journal  2005;46(2):300-304.
Major orbital complications after the endoscopic sinus surgeries are rare and of these, optic nerve injury is one of the most serious. This study was to undertaken to analyze 3 cases of optic nerve injury after endoscopic sinus surgery. The three cases included one patient with a loss of visual acuity and visual field defect, and two patients with total blindness. In all cases, no improvement of visual acuity was observed despite treatment. It is important to frequently check the location and direction of the endoscope during surgery to avoid optic nerve injury. In addition, surgeons must have a precise knowledge of the detailed anatomy through cadaver dissections, an ability to interpret the PNS CT scan and experienced procedural surgical skills.
doi:10.3349/ymj.2005.46.2.300
PMCID: PMC2823030  PMID: 15861507
Optic nerve injury; endoscopic sinus surgery
3.  The Dimension of Hyoid Bone Is Independently Associated with the Severity of Obstructive Sleep Apnea 
PLoS ONE  2013;8(12):e81590.
Introduction
We hypothesized that the size of the hyoid bone itself may affect the severity of sleep apnea. The aim of this study was to identify the relationship between hyoid bone dimensions and the severity of sleep apnea using computerized tomography (CT) axial images.
Methods
We retrospectively measured the hyoid bone in axial images of neck CTs and correlated these measurements with results of polysomnography in a total of 106 male patients. The new hyoid bone parameters studied in this study were as follows: distance between bilateral lesser horns (LH-d), distance between bilateral greater horns (GH-d), distance from the most anterior end of the hyoid arch to GH-d (AP), distance from the greater to the lesser horn on right and left sides (GH-LH), and the anterior angle between bilateral extensive lines from the greater to the lesser horn (H-angle). Data was analyzed using univariate and multivariate logistic regression, and Pearson correlation tests.
Results
We found a significant inverse correlation between the apnea-hypopnea index (AHI) and GH-d or AP. Neither the LH-d, GH-LH, nor H-angle were associated with the AHI. The patient group that met the criteria of both GH-d<45.4 and AP<33.4 demonstrated the most severe AHI.
Conclusion
The lateral width or antero-posterior length of hyoid bone was associated with AHI and predicted the severity of sleep apnea in male patients. This finding supports the role of expansion hyoidplasty for treatment of sleep apnea. Pre-operative consideration of these parameters may improve surgical outcomes in male patients with sleep apnea.
doi:10.1371/journal.pone.0081590
PMCID: PMC3846888  PMID: 24312562
4.  Autophagy Controls an Intrinsic Host Defense to Bacteria by Promoting Epithelial Cell Survival: A Murine Model 
PLoS ONE  2013;8(11):e81095.
Cell death is a critical host response to regulate the fate of bacterial infections, innate immune responses, and ultimately, disease outcome. Shigella spp. invade and colonize gut epithelium in human and nonhuman primates but adult mice are naturally resistant to intra-gastric Shigella infection. In this study, however, we found Shigella could invade the terminal ileum of the mouse small intestine by 1 hour after infection and be rapidly cleared within 24 h. These early phase events occurred shortly after oral infection resulting in epithelial shedding, degranulation of Paneth cells, and cell death in the intestine. During this process, autophagy proceeded without any signs of inflammation. In contrast, blocking autophagy in epithelial cells enhanced host cell death, leading to tissue destruction and to inflammation, suggesting that autophagic flow relieves cellular stress associated with host cell death and inflammation. Herein we propose a new concept of “epithelial barrier turnover” as a general intrinsic host defense mechanism that increases survival of host cells and inhibits inflammation against enteric bacterial infections, which is regulated by autophagy.
doi:10.1371/journal.pone.0081095
PMCID: PMC3834267  PMID: 24260541
5.  Munc18b is an essential gene in mice whose expression is limiting for secretion by airway epithelial and mast cells 
Biochemical Journal  2012;446(Pt 3):383-394.
Airway mucin secretion and MC (mast cell) degranulation must be tightly controlled for homoeostasis of the lungs and immune system respectively. We found the exocytic protein Munc18b to be highly expressed in mouse airway epithelial cells and MCs, and localized to the apical pole of airway secretory cells. To address its functions, we created a mouse with a severely hypomorphic Munc18b allele such that protein expression in heterozygotes was reduced by ~50%. Homozygous mutant mice were not viable, but heterozygotes showed a ~50% reduction in stimulated release of mucin from epithelial cells and granule contents from MCs. The defect in MCs affected only regulated secretion and not constitutive or transporter-mediated secretion. The severity of passive cutaneous anaphylaxis was also reduced by ~50%, showing that reduction of Munc18b expression results in an attenuation of physiological responses dependent on MC degranulation. The Munc18b promoter is controlled by INR (initiator), Sp1 (specificity protein 1), Ets, CRE (cAMP-response element), GRE (glucocorticoid-response element), GATA and E-box elements in airway epithelial cells; however, protein levels did not change during mucous metaplasia induced by allergic inflammation. Taken together, the results of the present study identify Munc18b as an essential gene that is a limiting component of the exocytic machinery of epithelial cells and MCs.
doi:10.1042/BJ20120057
PMCID: PMC3430001  PMID: 22694344
exocytosis; mast cell; mucin; mucus; Munc18; secretion; AB-PAS, Alcian Blue/periodic acid/Schiff reagent; bHLH, basic helix–loop–helix; CCSP, Clara cell secretory protein; Clca3, chloride channel, calcium-activated, family member 3; CRE, cAMP-response element; DNP, 2,4-dinitrophenol; FBS, fetal bovine serum; FcϵRIα, high-affinity IgE receptor, α subunit; FRT, flippase recognition target; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GRE, glucocorticoid-response element; HA, haemagglutinin; HSA, human serum albumin; HRP, horseradish peroxidase; IL-3, interleukin-3; INR, initiator; ISH, in situ hybridization; MC, mast cell; mBMMC, mouse bone-marrow-derived MC; mClca3, mouse Clca3; MFI, mean fluorescent intensity; mtCC, mouse transformed Clara cell; NK, natural killer; OCT, optimal cutting temperature compound; PAFS, periodic acid/fluorescent Schiff reagent; PBST, PBS containing 0.05% Tween 20; PGD2, prostaglandin D2; PGK, phosphoglucokinase; SCF, stem cell factor; SM, Sec1/Munc18; SNAP, soluble N-ethylmaleimide-sensitive factor-attachment protein; SNARE, SNAP receptor; Stxbp2, syntaxin-binding protein 2; TK, thymidine kinase; TNFα, tumour necrosis factor α; WT, wild-type; YFP, yellow fluorescent protein
6.  Protease-Activated Receptor 2 Mediates Mucus Secretion in the Airway Submucosal Gland 
PLoS ONE  2012;7(8):e43188.
Protease-activated receptor 2 (PAR2), a G protein-coupled receptor expressed in airway epithelia and smooth muscle, plays an important role in airway inflammation. In this study, we demonstrated that activation of PAR2 induces mucus secretion from the human airway gland and examined the underlying mechanism using the porcine and murine airway glands. The mucosa with underlying submucosal glands were dissected from the cartilage of tissues, pinned with the mucosal side up at the gas/bath solution interface of a physiological chamber, and covered with oil so that secretions from individual glands could be visualized as spherical bubbles in the oil. Secretion rates were determined by optical monitoring of the bubble diameter. The Ca2+-sensitive dye Fura2-AM was used to determine intracellular Ca2+ concentration ([Ca2+]i) by means of spectrofluorometry. Stimulation of human tracheal mucosa with PAR2-activating peptide (PAR2-AP) elevated intracellular Ca2+ and induced glandular secretion equal to approximately 30% of the carbachol response in the human airway. Porcine gland tissue was more sensitive to PAR2-AP, and this response was dependent on Ca2+ and anion secretion. When the mouse trachea were exposed to PAR2-AP, large amounts of secretion were observed in both wild type and ΔF508 cystic fibrosis transmembrane conductance regulator mutant mice but there is no secretion from PAR-2 knock out mice. In conclusion, PAR2-AP is an agonist for mucus secretion from the airway gland that is Ca2+-dependent and cystic fibrosis transmembrane conductance regulator-independent.
doi:10.1371/journal.pone.0043188
PMCID: PMC3419645  PMID: 22916223
7.  Proteomics-Based Identification of Proteins Secreted in Apical Surface Fluid of Squamous Metaplastic Human Tracheobronchial Epithelial Cells Cultured by Three-Dimensional Organotypic Air-Liquid Interface Method 
Cancer research  2007;67(14):6565-6573.
Squamous cell carcinoma (SCC) in the lung originates from bronchial epithelial cells that acquire increasingly abnormal phenotypes. Currently, no known biomarkers are clinically efficient for the early detection of premalignant lesions and lung cancer. We sought to identify secreted molecules produced from squamous bronchial epithelial cells cultured with organotypic culture methods. We analyzed protein expression patterns in the apical surface fluid (ASF) from aberrantly differentiated squamous metaplastic normal human tracheobronchial epithelial (NHTBE) and mucous NHTBE cells. Comparative two-dimensional PAGE analysis revealed 174 unique proteins in the ASF of squamous NHTBE cells compared to normal mucociliary differentiated NHTBE cells. Among them, 64 well-separated protein spots were identified using liquid chromatography-tandem mass spectrometry, revealing 22 different proteins in the ASF from squamous NHTBE cells. Expression of six of these proteins (SCCA1, SCCA2, S100A8, S100A9, annexin I, and annexin II) in the squamous NHTBE cells was further confirmed with immunoblot analysis. Notably, SCCA1 and SCCA2 were verified as being expressed in squamous metaplastic NHTBE cells but not in normal mucous NHTBE or normal bronchial epithelium. Moreover, SCCA1 and SCCA2 expression increased in in vitro lung carcinogenesis model cell lines with increasing malignancy. In summary, we identified proteins that are uniquely secreted from squamous metaplastic primary human bronchial epithelial cells cultured by the organotypic air-liquid interface method. These ASF proteins may be used to detect abnormal lesions in the lung without collecting invasive biopsy specimens.
doi:10.1158/0008-5472.CAN-06-2783
PMCID: PMC2958044  PMID: 17638865
bronchial epithelial cells; squamous metaplasia; secretion; biomarker; proteomics
8.  PPAR Ligand MCC-555 Suppresses Intestinal Polyps in APCMin+ Mice via ERK and PPAR Dependent Pathways 
Molecular cancer therapeutics  2008;7(9):2779-2787.
A large body of studies has suggested that peroxisome proliferator-activated receptor γ (PPARγ) ligands, such as thiazolidinedione, are potent candidates for chemopreventive agents. MCC-555 is a PPARγ/α dual agonist and has been previously shown to induce apoptosis in vitro; however, the molecular mechanisms by which MCC-555 affects anti-tumorigenesis in vivo are poorly understood. In this study, we explored the anti-tumorigenic effects of MCC-555 both in cell culture and in Apc-deficient mice, an animal model for human familial adenomatous polyposis. MCC-555 increased MUC2 expression in colorectal and lung cancer cells, and treatment with the PPARγ antagonist GW9662 revealed that MUC2 induction by MCC-555 was mediated in a PPARγ-dependent manner. Moreover, MCC-555 increased transcriptional activity of human and mouse MUC2 promoters. Subsequently, treatment with MCC-555 (30 mg/kg/day) for 4 weeks reduced the number of small intestinal polyps to 54.8% of that in control mice. In agreement with in vitro studies, enhanced Muc2 expression was observed in the small intestinal tumors of Min mice treated with MCC-555, suggesting that MUC2 expression may be associated at least in part with the anti-tumorigenic action of MCC-555. In addition, highly phosphorylated extracellular signal-regulated kinase (ERK) was found in the intestinal tumors of MCC-555-treated Min mice, and inhibition of the ERK pathway by a specific inhibitor markedly suppressed MCC-555-induced Muc2 expression in vitro. Overall, these results indicate that MCC-555 has a potent tumor suppressor activity in intestinal tumorigenesis, likely involving MUC2 up-regulation by ERK and PPARγ pathways.
doi:10.1158/1535-7163.MCT-08-0173
PMCID: PMC2597004  PMID: 18790758
MCC-555; colorectal cancer; ApcMin/+ mice; MUC2; PPARs; ERK pathway
9.  Green tea catechin (−)-epicatechin gallate induces tumour suppressor protein ATF3 via EGR-1 activation 
Epicatechin gallate (ECG) is the third major catechin component in green tea, but it shows strong biological activity in some aspects, including apoptosis, cell growth inhibition, and membrane transport system in various cells. We previously reported that ECG induces activating transcription factor 3 (ATF3), which is involved in pro-apoptosis in HCT-116 cells. In this report, we present a molecular mechanism by which ECG induces ATF3 expression at the transcriptional level. We found that Sp3 contributed to the basal expression of the ATF3 gene, whereas EGR-1 played an important role in ECG-induced ATF3 expression in HCT-116 cells, as assessed by EMSA and co-transfection experiments. These results suggested that EGR-1, a tumour suppressor protein, could substantiate ECG’s role of ATF3 expression in human colorectal cancer cells. We also found that pro-oxidant activity of ECG contributed to ECG-induced ATF3 expression.
doi:10.1016/j.ejca.2007.07.020
PMCID: PMC2174270  PMID: 17764926
ATF3; ECG; EGCG; EGR-1
10.  Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties 
Yonsei medical journal  2005;46(5):585-596.
There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase-2 (COX-2) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, they have been withdrawn from the market due to unexpected side effects. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This review provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, therefore, we will focus on some of the pivotal molecular targets that directly affect the inflammation process.
PMCID: PMC2562783  PMID: 16259055
11.  Growth inhibition and apoptosis by (−)-epicatechin gallate are mediated by cyclin D1 suppression in head and neck squamous carcinoma cells 
In recent studies, green tea components have been shown to induce cell growth arrest and apoptosis in head and neck squamous cell carcinoma (HNSCC) cells. In this report, we have investigated the effects of epicatechin gallate (ECG), one of the catechins in green tea, on anti-cancer activity in vitro. We found that cyclin D1 was highly expressed in HNSCC cells, and ECG suppressed 90% of cyclin D1 expression in SCC7 cells. We have also evaluated the effect of ECG on cell growth and apoptosis, showing that ECG (50 μM) exhibited a significant inhibition (50%) on the growth of SCC7 cells via G1 cell cycle arrest. ECG suppressed cyclin D1 in SCC7 cells in a dose- and time-dependent manner, and the suppression of the β-catenin pathway by ECG is one of the mechanism to facilitate ECG-induced cell growth arrest. These results suggest that ECG has a potential usage as a chemopreventive agent in HNSCC.
doi:10.1016/j.ejca.2006.07.014
PMCID: PMC2430519  PMID: 17045795
ECG; Cyclin D1; Apoptosis; HNSCC; β-Catenin; Chemoprevention
12.  Regulation of Mucin Gene Expression by CREB via a Nonclassical Retinoic Acid Signaling Pathway▿  
Molecular and Cellular Biology  2007;27(19):6933-6947.
Vitamin A and its metabolite retinoic acid (RA) are essential elements for normal lung development and the differentiation of lung epithelial cells. We previously showed that RA rapidly activated cyclic AMP response element-binding protein (CREB) in a nonclassical manner in normal human tracheobronchial epithelial (NHTBE) cells. In the present study, we further demonstrated that this nonclassical signaling of RA on the activation of CREB plays a critical role in regulating the expression of airway epithelial cell differentiation markers, the MUC2, MUC5AC, and MUC5B genes. We found that RA rapidly activates the protein kinase Cα isozyme and transmits the activation signal to CREB via the Raf/MEK/extracellular signal-regulated kinase/p90 ribosomal S6 kinase (RSK) pathway. Activated RSK translocated from the cytoplasm to the nucleus, where it phosphorylates CREB. Activated CREB then binds to a cis-acting replication element motif on the promoter (at nucleotides [nt] −878 to −871) of the MUC5AC gene. The depletion of CREB using small interfering RNA abolished not only the RA-induced MUC5AC but also RA-induced MUC2 and MUC5B. Taken together, our findings demonstrate that CREB activation via this nonclassical RA signaling pathway may play an important role in regulating the expression of mucin genes and mediating the early biological effects of RA during normal mucous differentiation in NHTBE cells.
doi:10.1128/MCB.02385-06
PMCID: PMC2099243  PMID: 17646388
13.  Nonclassical Action of Retinoic Acid on the Activation of the cAMP Response Element-binding Protein in Normal Human Bronchial Epithelial Cells 
Molecular Biology of the Cell  2006;17(2):566-575.
Vitamin A (retinol) is essential for normal regulation of cell growth and differentiation. We have shown that the retinol metabolite retinoic acid (RA) induces mucous cell differentiation of normal human tracheobronchial epithelial (NHTBE) cells. However, early biological effects of RA in the differentiation of bronchial epithelia are largely unknown. Here, we showed that RA rapidly activated cAMP response element-binding protein (CREB). However, RA did not use the conventional retinoic acid receptor (RAR)/retinoid X receptor (RXR) to activate CREB. RA activated CREB in NHTBE and H1734 cells in which RARs/RXR were silenced with small interfering RNA (siRNA) targeting RAR/RXR expression or deactivated by antagonist. Inhibition of protein kinase C (PKC) or extracellular regulated kinase (ERK1/2) blocked the RA-mediated activation of CREB. In addition, depletion of p90 ribosomal S6 kinase (RSK) via siRSK1/2 completely abolished the activation, suggesting that PKC, ERK, and RSK are required for the activation. Altogether, this study provides the first evidence that RA rapidly activates CREB transcription factor via PKC, ERK, and RSK in a retinoid receptor-independent manner in normal bronchial epithelial cells. This noncanonical RA signaling pathway may play an important role in mediating early biological effects in the mucociliary differentiation of bronchial epithelia.
doi:10.1091/mbc.E05-06-0519
PMCID: PMC1356569  PMID: 16280361
14.  Molecular Targets of Dietary Polyphenols with Anti-inflammatory Properties 
Yonsei Medical Journal  2005;46(5):585-596.
There is persuasive epidemiological and experimental evidence that dietary polyphenols have anti-inflammatory activity. Aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) have long been used to combat inflammation. Recently, cyclooxygenase (COX) inhibitors have been developed and recommended for treatment of rheumatoid arthritis (RA) and osteoarthritis (OA). However, two COX inhibitors have been withdrawn from the market due to unexpected side effects. Because conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of many inflammatory diseases, there is an urgent need to find safer compounds and to develop mechanism-based approaches for the management of these diseases. Polyphenols are found in many dietary plant products, including fruits, vegetables, beverages, herbs, and spices. Several of these compounds have been found to inhibit the inflammation process as well as tumorigenesis in experimental animals; they can also exhibit potent biological properties. In addition, epidemiological studies have indicated that populations who consume foods rich in specific polyphenols have lower incidences of inflammatory disease. This paper provides an overview of the research approaches that can be used to unravel the biology and health effects of polyphenols. Polyphenols have diverse biological effects, however, this review will focus on some of the pivotal molecular targets that directly affect the inflammation process.
doi:10.3349/ymj.2005.46.5.585
PMCID: PMC2562783  PMID: 16259055
Polyphenol; anti-inflammation; COX; LOX; NAG-1; NSAID
15.  The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia 
Molecular and Cellular Biology  2004;24(1):172-185.
In Drosophila melanogaster, although the NF-κB transcription factors play a pivotal role in the inducible expression of innate immune genes, such as antimicrobial peptide genes, the exact regulatory mechanism of the tissue-specific constitutive expression of these genes in barrier epithelia is largely unknown. Here, we show that the Drosophila homeobox gene product Caudal functions as the innate immune transcription modulator that is responsible for the constitutive local expression of antimicrobial peptides cecropin and drosomycin in a tissue-specific manner. These results suggest that certain epithelial tissues have evolved a unique constitutive innate immune strategy by recruiting a developmental “master control” gene.
doi:10.1128/MCB.24.1.172-185.2004
PMCID: PMC303351  PMID: 14673153
16.  Hypoxia-Mediated Mechanism of MUC5AC Production in Human Nasal Epithelia and Its Implication in Rhinosinusitis 
PLoS ONE  2014;9(5):e98136.
Background
Excessive mucus production is typical in various upper airway diseases. In sinusitis, the expression of MUC5AC, a major respiratory mucin gene, increases. However, the mechanisms leading to mucus hypersecretion in sinusitis have not been characterized. Hypoxia due to occlusion of the sinus ostium is one of the major pathologic mechanisms of sinusitis, but there have been no reports regarding the mechanism of hypoxia-induced mucus hypersecretion.
Methods and Findings
This study aims to identify whether hypoxia may induce mucus hypersecretion and elucidate its mechanism. Normal human nasal epithelial (NHNE) cells and human lung mucoepidermoid carcinoma cell line (NCI-H292) were used. Sinus mucosa from patients was also tested. Anoxic condition was in an anaerobic chamber with a 95% N2/5% CO2 atmosphere. The regulatory mechanism of MUC5AC by anoxia was investigated using RT-PCR, real-time PCR, western blot, ChIP, electrophoretic mobility shift, and luciferase assay. We show that levels of MUC5AC mRNA and the corresponding secreted protein increase in anoxic cultured NHNE cells. The major transcription factor for hypoxia-related signaling, HIF-1α, is induced during hypoxia, and transfection of a mammalian expression vector encoding HIF-1α results in increased MUC5AC mRNA levels under normoxic conditions. Moreover, hypoxia-induced expression of MUC5AC mRNA is down-regulated by transfected HIF-1α siRNA. We found increased MUC5AC promoter activity under anoxic conditions, as indicated by a luciferase reporter assay, and mutation of the putative hypoxia-response element in MUC5AC promoter attenuated this activity. Binding of over-expressed HIF-1α to the hypoxia-response element in the MUC5AC promoter was confirmed. In human sinusitis mucosa, which is supposed to be hypoxic, expression of MUC5AC and HIF-1α is higher than in control mucosa.
Conclusion
The results indicate that anoxia up-regulates MUC5AC by the HIF-1α signaling pathway in human nasal epithelia and suggest that hypoxia might be a pathogenic mechanism of mucus hypersecretion in sinusitis.
doi:10.1371/journal.pone.0098136
PMCID: PMC4026485  PMID: 24840724

Results 1-16 (16)