Search tips
Search criteria

Results 1-8 (8)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Targeted Resequencing Reveals ALK Fusions in Non-Small Cell Lung Carcinomas Detected by FISH, Immunohistochemistry, and Real-Time RT-PCR: A Comparison of Four Methods 
BioMed Research International  2013;2013:757490.
Anaplastic lymphoma receptor tyrosine kinase (ALK) gene rearrangements occur in a subgroup of non-small cell lung carcinomas (NSCLCs). The identification of these rearrangements is important for guiding treatment decisions. The aim of our study was to screen ALK gene fusions in NSCLCs and to compare the results detected by targeted resequencing with results detected by commonly used methods, including fluorescence in situ hybridization (FISH), immunohistochemistry (IHC), and real-time reverse transcription-PCR (RT-PCR). Furthermore, we aimed to ascertain the potential of targeted resequencing in detection of ALK-rearranged lung carcinomas. We assessed ALK fusion status for 95 formalin-fixed paraffin-embedded tumor tissue specimens from 87 patients with NSCLC by FISH and real-time RT-PCR, for 57 specimens from 56 patients by targeted resequencing, and for 14 specimens from 14 patients by IHC. All methods were performed successfully on formalin-fixed paraffin-embedded tumor tissue material. We detected ALK fusion in 5.7% (5 out of 87) of patients examined. The results obtained from resequencing correlated significantly with those from FISH, real-time RT-PCR, and IHC. Targeted resequencing proved to be a promising method for ALK gene fusion detection in NSCLC. Means to reduce the material and turnaround time required for analysis are, however, needed.
PMCID: PMC3581296  PMID: 23484153
2.  Role of RNA binding protein HuR in ductal carcinoma in situ of the breast 
The Journal of pathology  2011;224(4):529-539.
HuR is a ubiquitously expressed RNA-binding protein that modulates gene expression at the post-transcriptional level. It is predominantly nuclear, but can shuttle between the nucleus and the cytoplasm. While in the cytoplasm HuR can stabilize its target transcripts, many of which encode proteins involved in carcinogenesis. While cytoplasmic HuR expression is a marker of reduced survival in breast cancer, its role in precursor lesions of malignant diseases is unclear. To address this we explored HuR expression in atypical ductal hyperplasia (ADH) and in ductal in situ carcinomas (DCIS). We show that cytoplasmic HuR expression is elevated in both ADH and DCIS when compared to normal controls, and that this expression associated with high grade, progesterone receptor negativity and microinvasion and/or tumour-positive sentinel nodes of the DCIS. To study the mechanisms of HuR in breast carcinogenesis, HuR expression was silenced in an immortalized breast epithelial cell line (184B5Me), which led to reduction in anchorage-independent growth, increased programmed cell death and inhibition of invasion. In addition, we identified two novel target transcripts (CTGF and RAB31) that are regulated by HuR and that bind HuR protein in this cell line. Our results show that HuR is aberrantly expressed at early stages of breast carcinogenesis and that its inhibition can lead to suppression of this process.
PMCID: PMC3504799  PMID: 21480233
3.  Comparison of Dorsocervical With Abdominal Subcutaneous Adipose Tissue in Patients With and Without Antiretroviral Therapy–Associated Lipodystrophy 
Diabetes  2011;60(7):1894-1900.
Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally. No fat is lost dorsocervically and it can even accumulate in this region (buffalo hump). It is unknown how preserved dorsocervical fat differs from abdominal subcutaneous fat in HIV-1–infected cART-treated patients with (cART+LD+) and without (cART+LD−) lipodystrophy.
We used histology, microarray, PCR, and magnetic resonance imaging to compare dorsocervical and abdominal subcutaneous adipose tissue in cART+LD+ (n = 21) and cART+LD− (n = 11).
Albeit dorsocervical adipose tissue in cART+LD+ seems spared from lipoatrophy, its mitochondrial DNA (mtDNA; copies/cell) content was significantly lower (by 62%) than that of the corresponding tissue in cART+LD−. Expression of CD68 mRNA, a marker of macrophages, and numerous inflammatory genes in microarray were significantly lower in dorsocervical versus abdominal subcutaneous adipose tissue. Genes with the greatest difference in expression between the two depots were those involved in regulation of transcription and regionalization (homeobox genes), irrespective of lipodystrophy status. There was negligible mRNA expression of uncoupling protein 1, a gene characteristic of brown adipose tissue, in either depot.
Because mtDNA is depleted even in the nonatrophic dorsocervical adipose tissue, it is unlikely that the cause of lipoatrophy is loss of mtDNA. Dorsocervical adipose tissue is less inflamed than lipoatrophic adipose tissue. It does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue is in expression of homeobox genes.
PMCID: PMC3121420  PMID: 21602514
4.  Variability in the precursor proteins of collagen I and III in different stages of COPD 
Respiratory Research  2010;11(1):165.
Levels of precursor proteins of collagen I and III are increased in fibrotic pulmonary diseases. This study determined whether the expression of precursors of type I and III collagen proteins would be increased in small and large airways of COPD patients in various stages of the disease reflecting fibrogenesis.
The levels of precursor proteins of collagen I and III were studied by immunohistochemistry and quantified by image analysis in lung tissue of 16 non-smokers, 20 smokers with normal lung function, 20 smokers with stage I-II COPD and 8 ex-smokers with stage IV COPD.
In large airways, the subepithelial layer which was positive for precursor proteins of collagen I and III was thicker in smokers and in stage I-II COPD compared to non-smokers. Large airways in stage IV COPD showed reduced expression of precursor protein of collagen I whereas precursor of collagen III was increased. The amount of precursor protein of collagen III was increased in small airways of smokers and stage I-II COPD but reduced in stage IV COPD.
Precursor proteins of collagen I and III revealed different expression profiles in large and small airways in various stages of COPD. Smoking enhanced expression of both precursors in large airways with a positive correlation with pack-years.
PMCID: PMC3002373  PMID: 21118554
5.  Hemoglobin α and β are ubiquitous in the human lung, decline in idiopathic pulmonary fibrosis but not in COPD 
Respiratory Research  2010;11(1):123.
Idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) are disorders of the lung parenchyma. They share the common denominators of a progressive nature and poor prognosis. The goal was to use non-biased proteomics to discover new markers for these diseases.
Proteomics of fibrotic vs. control lung tissue suggested decreased levels of several spots in the lung specimens of IPF patients, which were identified as Hemoglobin (Hb) α and β monomers and Hbα complexes. The Hbα and β monomers and complexes were investigated in more detail in normal lung and lung specimens of patients with IPF and COPD by immunohistochemistry, morphometry and mass spectrometry (MS).
Both Hb monomers, in normal lung, were expressed especially in the alveolar epithelium. Levels of Hbα and β monomers and complexes were reduced/lost in IPF but not in the COPD lungs when compared to control lung. MS-analyses revealed Hbα modification at cysteine105 (Cysα105), preventing formation of the Hbα complexes in the IPF lungs. Hbα and Hbβ were expressed as complexes and monomers in the lung tissues, but were secreted into the bronchoalveolar lavage fluid and/or induced sputum supernatants as complexes corresponding to the molecular weight of the Hb tetramer.
The abundant expression of the oxygen carrier molecule Hb in the normal lung epithelium and its decline in IPF lung are new findings. The loss of Hb complex formation in IPF warrants further studies and may be considered as a disease-specific modification.
PMCID: PMC2949726  PMID: 20836851
6.  Gremlin-mediated Decrease in Bone Morphogenetic Protein Signaling Promotes Pulmonary Fibrosis 
Rationale: Members of the transforming growth factor (TGF)-β superfamily, including TGF-βs and bone morphogenetic proteins (BMPs), are essential for the maintenance of tissue homeostasis and regeneration after injury. We have observed that the BMP antagonist, gremlin, is highly up-regulated in idiopathic pulmonary fibrosis (IPF).
Objectives: To investigate the role of gremlin in the regulation of BMP signaling in pulmonary fibrosis.
Methods: Progressive asbestos-induced fibrosis in the mouse was used as a model of human IPF. TGF-β and BMP expression and signaling activities were measured from murine and human fibrotic lungs. The mechanism of gremlin induction was analyzed in cultured lung epithelial cells. In addition, the possible therapeutic role of gremlin inhibition was tested by administration of BMP-7 to mice after asbestos exposure.
Measurements and Main Results: Gremlin mRNA levels were up-regulated in the asbestos-exposed mouse lungs, which is in agreement with the human IPF biopsy data. Down-regulation of BMP signaling was demonstrated by reduced levels of Smad1/5/8 and enhanced Smad2 phosphorylation in asbestos-treated lungs. Accordingly, analyses of cultured human bronchial epithelial cells indicated that asbestos-induced gremlin expression could be prevented by inhibitors of the TGF-β receptor and also by inhibitors of the mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase pathways. BMP-7 treatment significantly reduced hydroxyproline contents in the asbestos-treated mice.
Conclusions: The TGF-β and BMP signaling balance is important for lung regenerative events and is significantly perturbed in pulmonary fibrosis. Rescue of BMP signaling activity may represent a potential beneficial strategy for treating human pulmonary fibrosis.
PMCID: PMC2218851  PMID: 17975199
gremlin; pulmonary fibrosis; bone morphogenetic protein; transforming growth factor-β
7.  Glutathione S-transferase omega in the lung and sputum supernatants of COPD patients 
Respiratory Research  2007;8(1):48.
The major contribution to oxidant related lung damage in COPD is from the oxidant/antioxidant imbalance and possibly impaired antioxidant defence. Glutathione (GSH) is one of the most important antioxidants in human lung and lung secretions, but the mechanisms participating in its homeostasis are partly unclear. Glutathione-S-transferase omega (GSTO) is a recently characterized cysteine containing enzyme with the capability to bind and release GSH in vitro. GSTO has not been investigated in human lung or lung diseases.
GSTO1-1 was investigated by immunohistochemistry and Western blot analysis in 72 lung tissue specimens and 40 sputum specimens from non-smokers, smokers and COPD, in bronchoalveolar lavage fluid and in plasma from healthy non-smokers and smokers. It was also examined in human monocytes and bronchial epithelial cells and their culture mediums in vitro.
GSTO1-1 was mainly expressed in alveolar macrophages, but it was also found in airway and alveolar epithelium and in extracellular fluids including sputum supernatants, bronchoalveolar lavage fluid, plasma and cell culture mediums. The levels of GSTO1-1 were significantly lower in the sputum supernatants (p = 0.023) and lung homogenates (p = 0.003) of COPD patients than in non-smokers.
GSTO1-1 is abundant in the alveolar macrophages, but it is also present in extracellular fluids and in airway secretions, the levels being decreased in COPD. The clinical significance of GSTO1-1 and its role in regulating GSH homeostasis in airway secretions, however, needs further investigations.
PMCID: PMC1939846  PMID: 17617905
8.  Modulation of glutaredoxin in the lung and sputum of cigarette smokers and chronic obstructive pulmonary disease 
Respiratory Research  2006;7(1):133.
One typical feature in chronic obstructive pulmonary disease (COPD) is the disturbance of the oxidant/antioxidant balance. Glutaredoxins (Grx) are thiol disulfide oxido-reductases with antioxidant capacity and catalytic functions closely associated with glutathione, the major small molecular weight antioxidant of human lung. However, the role of Grxs in smoking related diseases is unclear.
Immunohistochemical and Western blot analyses were conducted with lung specimens (n = 45 and n = 32, respectively) and induced sputum (n = 50) of healthy non-smokers and smokers without COPD and at different stages of COPD.
Grx1 was expressed mainly in alveolar macrophages. The percentage of Grx1 positive macrophages was significantly lower in GOLD stage IV COPD than in healthy smokers (p = 0.021) and the level of Grx1 in total lung homogenate decreased both in stage I–II (p = 0.045) and stage IV COPD (p = 0.022). The percentage of Grx1 positive macrophages correlated with the lung function parameters (FEV1, r = 0.45, p = 0.008; FEV1%, r = 0.46, p = 0.007, FEV/FVC%, r = 0.55, p = 0.001). Grx1 could also be detected in sputum supernatants, the levels being increased in the supernatants from acute exacerbations of COPD compared to non-smokers (p = 0.013) and smokers (p = 0.051).
The present cross-sectional study showed that Grx1 was expressed mainly in alveolar macrophages, the levels being decreased in COPD patients. In addition, the results also demonstrated the presence of Grx1 in extracellular fluids including sputum supernatants. Overall, the present study suggests that Grx1 is a potential redox modulatory protein regulating the intracellular as well as extracellular homeostasis of glutathionylated proteins and GSH in human lung.
PMCID: PMC1633737  PMID: 17064412

Results 1-8 (8)