Search tips
Search criteria

Results 1-11 (11)

Clipboard (0)

Select a Filter Below

Year of Publication
1.  Eya1 regulates the growth of otic epithelium and interacts with Pax2 during the development of all sensory areas in the inner ear 
Developmental biology  2006;298(2):10.1016/j.ydbio.2006.06.049.
Members of the Eyes absent (Eya) gene family are important for auditory system development. While mutations in human EYA4 cause late-onset deafness at the DFNA10 locus, mutations in human EYA1 cause branchio–oto–renal (BOR) syndrome. Inactivation of Eya1 in mice causes an early arrest of the inner ear development at the otocyst stage. To better understand the role of Eya1 in inner ear development, we analyzed the cellular and molecular basis of the early defect observed in the Eya1 mutant embryos. We report here that Eya1−/− otic epithelium shows reduced cell proliferation from E8.5 and increased cell apoptosis from E9.0, thus providing insights into the cellular basis of inner ear defect which occurred in the absence of Eya1. Previous studies have suggested that Pax, Eya and Six genes function in a parallel or independent pathway during inner ear development. However, it remains unknown whether Pax genes interact with Eya1 or Six1 during inner ear morphogenesis. To further evaluate whether Pax genes function in the Eya1–Six1 pathway or whether they interact with Eya1 or Six1 during inner ear morphogenesis, we have analyzed the expression pattern of Eya1, Pax2 and Pax8 on adjacent sections of otic epithelium from E8.5 to 9.5 by in situ hybridization and the inner ear gross structures of Pax2, Eya1 and Six1 compound mutants at E17.5 by latex paintfilling. Our data strongly suggest that Pax2 interacts with Eya1 during inner ear morphogenesis, and this interaction is critical for the development of all sensory areas in the inner ear. Furthermore, otic marker analysis in both Eya1−/− and Pax2−/− embryos indicates that Eya1 but not Pax2 regulates the establishment of regional specification of the otic vesicle. Together, these results show that, while Eya1 exerts an early function essential for normal growth and patterning of the otic epithelium, it also functionally synergizes with Pax2 during the morphogenesis of all sensory areas of mammalian inner ear.
PMCID: PMC3882145  PMID: 16916509
Eya1; Inner ear; Endolymphatic duct; Six1; Pax2; Pax8; Otic patterning; Sensory areas of the inner ear
2.  Two types of brown adipose tissue in humans 
Adipocyte  2013;3(1):63-66.
During the last years the existence of metabolically active brown adipose tissue in adult humans has been widely accepted by the research community. Its unique ability to dissipate chemical energy stored in triglycerides as heat makes it an attractive target for new drugs against obesity and its related diseases. Hence the tissue is now subject to intense research, the hypothesis being that an expansion and/or activation of the tissue is associated with a healthy metabolic phenotype. Animal studies provide evidence for the existence of at least two types of brown adipocytes. Apart from the classical brown adipocyte that is found primarily in the interscapular region where it constitutes a thermogenic organ, a second type of brown adipocyte, the so-called beige adipocyte, can appear within white adipose tissue depots. The fact that the two cell types develop from different precursors suggests that they might be recruited and stimulated by different cues and therefore represent two distinct targets for therapeutic intervention. The aim of this commentary is to discuss recent work addressing the question whether also humans possess two types of brown adipocytes and to highlight some issues when looking for molecular markers for such cells.
PMCID: PMC3917936  PMID: 24575372
adipose tissue; brown adipose tissue; beige adipocyte; classical brown adipocyte; human
3.  Beige Adipocytes are a Distinct Type of Thermogenic Fat Cell in Mouse and Human 
Cell  2012;150(2):366-376.
Brown fat defends against hypothermia and obesity through thermogenesis mediated by mitochondrial UCP1. Recent data suggest that there are two distinct types of brown fat: classical brown fat derived from a myf-5 cellular lineage and UCP1-positive cells that emerge in white fat from a non-myf-5 lineage. Here we report the cloning of “beige” cells from murine white fat depots. Beige cells resemble white fat cells in having extremely low basal expression of UCP1, but like classical brown fat, they respond to cyclic AMP stimulation with high UCP1 expression and respiration rates. Beige cells have a gene expression pattern distinct from either white or brown fat and are preferentially sensitive to the polypeptide hormone irisin. Finally, we show that deposits of brown fat previously observed in adult humans are composed of beige adipose cells. These data illustrate a new cell type with therapeutic potential in mouse and human.
PMCID: PMC3402601  PMID: 22796012
4.  Comparison of Dorsocervical With Abdominal Subcutaneous Adipose Tissue in Patients With and Without Antiretroviral Therapy–Associated Lipodystrophy 
Diabetes  2011;60(7):1894-1900.
Combination antiretroviral therapy (cART) is associated with lipodystrophy, i.e., loss of subcutaneous adipose tissue in the abdomen, limbs, and face and its accumulation intra-abdominally. No fat is lost dorsocervically and it can even accumulate in this region (buffalo hump). It is unknown how preserved dorsocervical fat differs from abdominal subcutaneous fat in HIV-1–infected cART-treated patients with (cART+LD+) and without (cART+LD−) lipodystrophy.
We used histology, microarray, PCR, and magnetic resonance imaging to compare dorsocervical and abdominal subcutaneous adipose tissue in cART+LD+ (n = 21) and cART+LD− (n = 11).
Albeit dorsocervical adipose tissue in cART+LD+ seems spared from lipoatrophy, its mitochondrial DNA (mtDNA; copies/cell) content was significantly lower (by 62%) than that of the corresponding tissue in cART+LD−. Expression of CD68 mRNA, a marker of macrophages, and numerous inflammatory genes in microarray were significantly lower in dorsocervical versus abdominal subcutaneous adipose tissue. Genes with the greatest difference in expression between the two depots were those involved in regulation of transcription and regionalization (homeobox genes), irrespective of lipodystrophy status. There was negligible mRNA expression of uncoupling protein 1, a gene characteristic of brown adipose tissue, in either depot.
Because mtDNA is depleted even in the nonatrophic dorsocervical adipose tissue, it is unlikely that the cause of lipoatrophy is loss of mtDNA. Dorsocervical adipose tissue is less inflamed than lipoatrophic adipose tissue. It does not resemble brown adipose tissue. The greatest difference in gene expression between dorsocervical and abdominal subcutaneous adipose tissue is in expression of homeobox genes.
PMCID: PMC3121420  PMID: 21602514
5.  The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function 
Diabetes  2011;60(2):427-435.
Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function.
The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitative real-time PCR. The potential of a direct transcriptional regulation of regulated genes was tested in promoter assays, and mitochondrial morphology was investigated by electron microscopy. Mitochondrial function was tested by measuring oxygen consumption and extracellular acidification rates as well as palmitate oxidation.
Enhanced expression of FOXC2 in adipocytes or in cells with no endogenous Foxc2 expression induces mitochondriogenesis and an elongated mitochondrial morphology. Together with increased aerobic metabolic capacity, increased palmitate oxidation, and upregulation of genes encoding respiratory complexes and of brown fat-related genes, Foxc2 also specifically induces mitochondrial fusion genes in adipocytes. Among tested forkhead genes, Foxc2 is unique in its ability to trans-activate the nuclear-encoded mitochondrial transcription factor A (mtTFA/Tfam) gene—a master regulator of mitochondrial biogenesis. In human adipose tissue the expression levels of mtTFA/Tfam and of fusion genes also correlate with that of Foxc2.
We previously showed that a high-calorie diet and insulin induce Foxc2 in adipocytes; the current findings identify a previously unknown role for Foxc2 as an important metabo-regulator of mitochondrial morphology and metabolism.
PMCID: PMC3028341  PMID: 21270254
6.  Adipocyte mitochondrial genes and the forkhead factor FOXC2 are decreased in type 2 diabetes patients and normalized in response to rosiglitazone 
FOXC2 has lately been implicated in diabetes and obesity as well as mitochondrial function and biogenesis and also as a regulator of mtTFA/Tfam. In this study, the expression of FOXC2 and selected genes involved in mitochondrial function and biogenesis in healthy subjects and in a matched cohort with type 2 diabetes patients before and after treatment with rosiglitazone was determined. Quantitative real time PCR was used to analyze both RNA and DNA from biopsies from subcutaneous adipose tissue.
Blood samples and subcutaneous abdominal fat biopsies were collected from 12 T2D patients, of which 11 concluded the study, pre-treatment and 90 days after initiation of rosiglitazone treatment, and from 19 healthy control subjects on the first and only visit from healthy subjects. Clinical parameters were measured on the blood samples. RNA and DNA were prepared from the fat biopsies and gene expression was measured with real time PCR.
The expression level of genes in the mitochondrial respiratory complexes I - IV were significantly downregulated in the diabetic patients and restored in response to rosiglitazone treatment. Rosiglitazone treatment also increased the relative number of mitochondria in diabetic patients compared with controls. Furthermore, the transcription factors FOXC2 and mtTFA/Tfam displayed a response pattern identical to the mitochondrial genes.
FOXC2, mtTFA/Tfam and subunits of the respiratory complexes I - IV show equivalent regulation in gene expression levels in response to TZD treatment. This, together with the knowledge that FOXC2 has a regulatory function of mtTFA/Tfam and mitochondrial biogenesis, suggests that FOXC2 has a possible functional role in the TZD activated mitochondrial response.
PMCID: PMC3230127  PMID: 22098677
7.  Therapeutic Prospects of Metabolically Active Brown Adipose Tissue in Humans 
The world-wide obesity epidemic constitutes a severe threat to human health and wellbeing and poses a major challenge to health-care systems. Current therapeutic approaches, relying mainly on reduced energy intake and/or increased exercise energy expenditure, are generally of limited effectiveness. Previously believed to be present only in children, the existence of metabolically active brown adipose tissue (BAT) was recently demonstrated also in healthy human adults. The physiological role of BAT is to dissipate chemical energy, mainly from fatty acids, as heat to maintain body temperature in cold environments. Recent studies indicate that the activity of BAT is negatively correlated with overweight and obesity, findings that raise the exciting possibility of new and effective weight reduction therapies based on increased BAT energy expenditure, a process likely to be amenable to pharmacological intervention.
PMCID: PMC3355987  PMID: 22649390
brown adipose tissue; thermogenesis; energy expenditure; obesity; overweight; weight loss; metabolic syndrome
8.  Pilot Study of Sentinel-Node-Based Adoptive Immunotherapy in Advanced Colorectal Cancer 
Annals of Surgical Oncology  2010;17(7):1747-1757.
Despite optimal surgical treatment and modern adjuvant therapies, 50% of patients diagnosed with colorectal cancer die within 5 years. Immunotherapy offers an appealing complement to traditional chemotherapy, with possible long-term protection against tumor recurrences through immunological memory. We have conducted a pilot study of a novel adoptive immunotherapy, using autologous, in vitro expanded lymphocytes isolated from the tumor-draining sentinel lymph node.
Study Design
Sentinel nodes were recovered from 16 patients with disseminated or locally advanced, high-risk colorectal cancer. Single-cell suspensions of sentinel-node-acquired lymphocytes were clonally expanded in vitro in the presence of autologous tumor extract and returned as a transfusion. Patients were followed with clinical and radiological evaluations. Long-term survival was compared with traditionally treated controls.
Sentinel-node-acquired CD4+ Th1-lymphocytes could be clonally expanded in vitro and safely administered to all 16 patients without side-effects. In four out of nine stage IV patients, complete tumor regression occurred. Median survival time in the stage IV patients (n = 9) was 2.6 years, as compared with 0.8 years in conventionally treated controls. A dose-dependent effect with regards to reduced tumor burden and long-term survival was observed.
Sentinel-node-based adoptive immunotherapy is feasible; the method has shown no apparent side-effects and appears to convey therapeutic antitumor effects. Further studies are justified to determine its efficacy and precise role in the treatment of colorectal cancer.
PMCID: PMC2889279  PMID: 20119674
9.  The Forkhead Transcription Factor Foxi1 Is a Master Regulator of Vacuolar H+-ATPase Proton Pump Subunits in the Inner Ear, Kidney and Epididymis 
PLoS ONE  2009;4(2):e4471.
The vacuolar H+-ATPase dependent transport of protons across cytoplasmic membranes in FORE (forkhead related) cells of endolymphatic epithelium in the inner ear, intercalated cells of collecting ducts in the kidney and in narrow and clear cells of epididymis require expression of several subunits that assemble into a functional multimeric proton pump. We demonstrate that expression of four such subunits A1, B1, E2 and a4 all co-localize with the forkhead transcription factor Foxi1 in a subset of epithelial cells at these three locations. In cells, of such epithelia, that lack Foxi1 we fail to identify any expression of A1, B1, E2 and a4 demonstrating an important role for the transcription factor Foxi1 in regulating subunit availability. Promoter reporter experiments, electrophoretic mobility shift assays (EMSA) and site directed mutagenesis demonstrate that a Foxi1 expression vector can trans-activate an a4-promoter reporter construct in a dose dependent manner. Furthermore, we demonstrate using chromatin immunoprecipitation (ChIP) assays that Foxi1-dependent activation to a large extent depends on cis-elements at position −561/−547 in the a4 promoter. Thus, we provide evidence that Foxi1 is necessary for expression of at least four subunits in three different epithelia and most likely is a major determinant for proper assembly of a functional vacuolar H+-ATPase complex at these locations.
PMCID: PMC2637605  PMID: 19214237
10.  Lack of the Central Nervous System- and Neural Crest-Expressed Forkhead Gene Foxs1 Affects Motor Function and Body Weight 
Molecular and Cellular Biology  2005;25(13):5616-5625.
To gain insight into the expression pattern and functional importance of the forkhead transcription factor Foxs1, we constructed a Foxs1-β-galactosidase reporter gene “knock-in” (Foxs1β-gal/β-gal) mouse, in which the wild-type (wt) Foxs1 allele has been inactivated and replaced by a β-galactosidase reporter gene. Staining for β-galactosidase activity reveals an expression pattern encompassing neural crest-derived cells, e.g., cranial and dorsal root ganglia as well as several other cell populations in the central nervous system (CNS), most prominently the internal granule layer of cerebellum. Other sites of expression include the lachrymal gland, outer nuclear layer of retina, enteric ganglion neurons, and a subset of thalamic and hypothalamic nuclei. In the CNS, blood vessel-associated smooth muscle cells and pericytes stain positive for Foxs1. Foxs1β-gal/β-gal mice perform significantly better (P < 0.01) on a rotating rod than do wt littermates. We have also noted a lower body weight gain (P < 0.05) in Foxs1β-gal/lβ-gal males on a high-fat diet, and we speculate that dorsomedial hypothalamic neurons, expressing Foxs1, could play a role in regulating body weight via regulation of sympathetic outflow. In support of this, we observed increased levels of uncoupling protein 1 mRNA in Foxs1β-gal/β-gal mice. This points toward a role for Foxs1 in the integration and processing of neuronal signals of importance for energy turnover and motor function.
PMCID: PMC1157007  PMID: 15964817
11.  Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1 
Journal of Clinical Investigation  2004;113(11):1560-1570.
While macro- and microscopic kidney development appear to proceed normally in mice that lack Foxi1, electron microscopy reveals an altered ultrastructure of cells lining the distal nephron. Northern blot analyses, cRNA in situ hybridizations, and immunohistochemistry demonstrate a complete loss of expression of several anion transporters, proton pumps, and anion exchange proteins expressed by intercalated cells of the collecting ducts, many of which have been implicated in hereditary forms of distal renal tubular acidosis (dRTA). In Foxi1-null mutants the normal epithelium with its two major cell types — principal and intercalated cells — has been replaced by a single cell type positive for both principal and intercalated cell markers. To test the functional consequences of these alterations, Foxi1–/– mice were compared with WT littermates in their response to an acidic load. This revealed an inability to acidify the urine as well as a lowered systemic buffer capacity and overt acidosis in null mutants. Thus, Foxi1–/– mice seem to develop dRTA due to altered cellular composition of the distal nephron epithelium, thereby denying this epithelium the proper gene expression pattern needed for maintaining adequate acid-base homeostasis.
PMCID: PMC419486  PMID: 15173882

Results 1-11 (11)