PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-4 (4)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  UFV-P2 as a member of the Luz24likevirus genus: a new overview on comparative functional genome analyses of the LUZ24-like phages 
BMC Genomics  2014;15:7.
Background
Phages infecting spoilage microorganisms have been considered as alternative biocontrol agents, and the study of their genomes is essential to their safe use in foods. UFV-P2 is a new Pseudomonas fluorescens-specific phage that has been tested for its ability to inhibit milk proteolysis.
Results
The genome of the phage UFV-P2 is composed of bidirectional modules and presented 75 functionally predict ORFs, forming clusters of early and late transcription. Further genomic comparisons of Pseudomonas-specific phages showed that these viruses could be classified according to conserved segments that appear be free from genome rearrangements, called locally collinear blocks (LCBs). In addition, the genome organization of the phage UFV-P2 was shown to be similar to that of phages PaP3 and LUZ24 which have recently been classified as a Luz24likevirus.
Conclusions
We have presented the functional annotation of UFV-P2, a new Pseudomonas fluorescens phage. Based on structural genomic comparison and phylogenetic clustering, we suggest the classification of UFV-P2 in the Luz24likevirus genus, and present a set of shared locally collinear blocks as the genomic signature for this genus.
doi:10.1186/1471-2164-15-7
PMCID: PMC3890496  PMID: 24384011
2.  Safety evaluation of the antimicrobial peptide bovicin HC5 orally administered to a murine model 
BMC Microbiology  2013;13:69.
Background
Bovicin HC5 is an antimicrobial peptide that shows a broad spectrum of activity and potential for biotechnological and therapeutic applications. To gain insight about the safety of bovicin HC5 application, the histological and immunostimulatory effects of orally administrated bovicin HC5 to BALB/c mice were evaluated. BALB/c mice were divided into three groups: negative control (NC group); mice given purified bovicin HC5 (Bov group); mice given ovalbumin (positive control, PC group; a murine model of enteropathy). The mice were initially pre-sensitized, and PBS, bovicin HC5 or ovalbumin were administered for 30 days by daily gavages. Histological and morphometric analysis were performed and the relative expression of cytokines was analyzed by real-time RT-PCR.
Results
The oral administration of bovicin HC5 to BALB/c mice reduced weight gain and caused alterations in the small intestine, although absorptive changes have not been detected. The number of total goblet cells and the mucopolysaccharides production were not affected by bovicin HC5 administration. A hypertrophy of Paneth cells and an increase in the number of mitotic cells were observed in Bov group, while the number of mast cells remained unaltered. Increased expression of TNF-α, INF-γ and IL-12 was observed in the small intestine upon bovicin HC5 administration.
Conclusion
Bovicin HC5 has only minor effects on intestinal permeability and did not elicit an allergenic response upon oral administration to animal models. Considering the low in vivo toxicity of bovicin HC5, it might be a good candidate for enteral applications.
doi:10.1186/1471-2180-13-69
PMCID: PMC3639230  PMID: 23537130
Bacteriocin; Lantibiotic; Streptococcus bovis HC5; BALB/c mice; Ovalbumin
3.  Complete Genome Sequence of the Pseudomonas fluorescens Bacteriophage UFV-P2 
Genome Announcements  2013;1(1):e00006-12.
Milk proteolysis caused by Pseudomonas fluorescens is a serious problem in the dairy industries as a result of its ability to grow under refrigeration. The use of phages to control contaminants in food has been considered an alternative to traditional methods; therefore, a thorough understanding of such organisms is vital for their use. In this study, we show the complete genome sequence and analysis of a P. fluorescens phage isolated from wastewater of a dairy industry in Brazil.
doi:10.1128/genomeA.00006-12
PMCID: PMC3569311  PMID: 23405322
4.  Effects of the Oral Administration of Viable and Heat-Killed Streptococcus bovis HC5 Cells to Pre-Sensitized BALB/c Mice 
PLoS ONE  2012;7(10):e48313.
Antimicrobial peptides have been suggested as an alternative to classical antibiotics in livestock production and bacteriocin-producing bacteria could be added to animal feeds to deliver bacteriocins in the gastrointestinal (GI) tract of ruminant and monogastric animals. In this study, viable (V) and heat-killed (HK) Streptococcus bovis HC5 cells were orally administered to pre-sensitized mice in order to assess the effects of a bacteriocin-producing bacteria on histological parameters and the immune response of the GI tract of monogastric animals. The administration of V and HK S. bovis HC5 cells during 58 days to BALB/c mice did not affect weight gain, but an increase in gut permeability was detected in animals receiving the HK cells. Viable and heat killed cells caused similar morphological alterations in the GI tract of the animals, but the most prominent effects were detected in the small intestine. The oral administration of S. bovis HC5 also influenced cytokine production in the small intestine, and the immune-mediated activity differed between V and HK cells. The relative expression of IL-12 and INF-γ was significantly higher in the small intestine of mice treated with V cells, while an increase in IL-5, IL-13 and TNF-α expression was only detected in mice treated with HK cells. Considering that even under a condition of severe challenge (pre-sensitization followed by daily exposure to the same bacterial immunogen) the general health of the animals was maintained, it appears that oral administration of S. bovis HC5 cells could be a useful route to deliver bacteriocin in the GI tract of livestock animals.
doi:10.1371/journal.pone.0048313
PMCID: PMC3483269  PMID: 23144752

Results 1-4 (4)