Search tips
Search criteria

Results 1-4 (4)

Clipboard (0)

Select a Filter Below

Year of Publication
Document Types
1.  Differential Tumor Surveillance by Natural Killer (Nk) and Nkt Cells 
Natural tumor surveillance capabilities of the host were investigated in six different mouse tumor models where endogenous interleukin (IL)-12 does or does not dictate the efficiency of the innate immune response. Gene-targeted and lymphocyte subset–depleted mice were used to establish the relative importance of natural killer (NK) and NK1.1+ T (NKT) cells in protection from tumor initiation and metastasis. In the models examined, CD3− NK cells were responsible for tumor rejection and protection from metastasis in models where control of major histocompatibility complex class I–deficient tumors was independent of IL-12. A protective role for NKT cells was only observed when tumor rejection required endogenous IL-12 activity. In particular, T cell receptor Jα281 gene-targeted mice confirmed a critical function for NKT cells in protection from spontaneous tumors initiated by the chemical carcinogen, methylcholanthrene. This is the first description of an antitumor function for NKT cells in the absence of exogenously administered potent stimulators such as IL-12 or α-galactosylceramide.
PMCID: PMC2195840  PMID: 10684858
tumor immunity; perforin; natural killer T cells; interleukin 12; carcinogen
2.  Augmentation of Vα14 Nkt Cell–Mediated Cytotoxicity by Interleukin 4 in an Autocrine Mechanism Resulting in the Development of Concanavalin a–Induced Hepatitis 
The administration of concanavalin A (Con A) induces a rapid severe injury of hepatocytes in mice. Although the Con A–induced hepatitis is considered to be an experimental model of human autoimmune hepatitis, the precise cellular and molecular mechanisms that induce hepatocyte injury remain unclear. Here, we demonstrate that Vα14 NKT cells are required and sufficient for induction of this hepatitis. Moreover, interleukin (IL)-4 produced by Con A–activated Vα14 NKT cells is found to play a crucial role in disease development by augmenting the cytotoxic activity of Vα14 NKT cells in an autocrine fashion. Indeed, short-term treatment with IL-4 induces an increase in the expression of granzyme B and Fas ligand (L) in Vα14 NKT cells. Moreover, Vα14 NKT cells from either perforin knock-out mice or FasL-mutant gld/gld mice fail to induce hepatitis, and hence perforin–granzyme B and FasL appear to be effector molecules in Con A–induced Vα14 NKT cell–mediated hepatocyte injury.
PMCID: PMC2195789  PMID: 10620609
IL-4; Vα14 NKT cell; Con A; hepatitis; autocrine
3.  Inhibition of T Helper Cell Type 2 Cell Differentiation and Immunoglobulin E Response by Ligand-Activated Vα14 Natural Killer T Cells 
Murine Vα14 natural killer T (NKT) cells are thought to play a crucial role in various immune responses, including infectious, allergic, and autoimmune diseases. Because Vα14 NKT cells produce large amounts of both interleukin (IL)-4 and interferon (IFN)-γ upon in vivo stimulation with a specific ligand, α-galactosylceramide (α-GalCer), or after treatment with anti-CD3 antibody, a regulatory role on helper T (Th) cell differentiation has been proposed for these cells. However, the identity of the cytokine produced by Vα14 NKT cells that play a dominant role on the Th cell differentiation still remains controversial. Here, we demonstrate by using Vα14 NKT-deficient mice that Vα14 NKT cells are dispensable for the induction of antigen-specific immunoglobulin (Ig)E responses induced by ovalbumin immunization or Nippostrongylus brasiliensis infection. However, upon in vivo activation with α-GalCer, Vα14 NKT cells are found to suppress antigen-specific IgE production. The suppression appeared to be IgE specific, and was not detected in either Vα14 NKT– or IFN-γ–deficient mice. Consistent with these results, we also found that ligand-activated Vα14 NKT cells inhibited Th2 cell differentiation in an in vitro induction culture system. Thus, it is likely that activated Vα14 NKT cells exert a potent inhibitory effect on Th2 cell differentiation and subsequent IgE production by producing a large amount of IFN-γ. In marked contrast, our studies have revealed that IL-4 produced by Vα14 NKT cells has only a minor effect on Th2 cell differentiation.
PMCID: PMC2195639  PMID: 10499917
interferon γ; interleukin 4; Nippostrongylus brasiliensis; ovalbumin; suppression
4.  The Natural Killer T (NKT) Cell Ligand α-Galactosylceramide Demonstrates Its Immunopotentiating Effect by Inducing Interleukin (IL)-12 Production by Dendritic Cells and IL-12 Receptor Expression on NKT Cells  
The Journal of Experimental Medicine  1999;189(7):1121-1128.
The natural killer T (NKT) cell ligand α-galactosylceramide (α-GalCer) exhibits profound antitumor activities in vivo that resemble interleukin (IL)-12–mediated antitumor activities. Because of these similarities between the activities of α-GalCer and IL-12, we investigated the involvement of IL-12 in the activation of NKT cells by α-GalCer. We first established, using purified subsets of various lymphocyte populations, that α-GalCer selectively activates NKT cells for production of interferon (IFN)-γ. Production of IFN-γ by NKT cells in response to α-GalCer required IL-12 produced by dendritic cells (DCs) and direct contact between NKT cells and DCs through CD40/CD40 ligand interactions. Moreover, α-GalCer strongly induced the expression of IL-12 receptor on NKT cells from wild-type but not CD1−/− or Vα14−/− mice. This effect of α-GalCer required the production of IFN-γ by NKT cells and production of IL-12 by DCs. Finally, we showed that treatment of mice with suboptimal doses of α-GalCer together with suboptimal doses of IL-12 resulted in strongly enhanced natural killing activity and IFN-γ production. Collectively, these findings indicate an important role for DC-produced IL-12 in the activation of NKT cells by α-GalCer and suggest that NKT cells may be able to condition DCs for subsequent immune responses. Our results also suggest a novel approach for immunotherapy of cancer.
PMCID: PMC2193012  PMID: 10190903
natural killer T cells; dendritic cells; α-galactosylceramide; interleukin 12; interleukin 12 receptor

Results 1-4 (4)