PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Autism: A Redox/Methylation Disorder 
While autism is still a mysterious developmental disorder, expansion of research efforts over the past 10 to 15 years has yielded a number of important clues implicating both genetic and environmental factors. We can now assert with a measure of confidence that contemporary autism reflects the combined impact of multiple environmental factors on the processes that regulate development in genetically vulnerable individuals. Since epigenetic regulation of gene expression is acknowledged as the most critical factor in development and DNA methylation (the addition of a carbon atom at discrete locations) is the fundamental event for epigenetic regulation, dysfunctional methylation can be considered as a likely cause of autism. Since methylation activity is highly sensitive to oxidative stress (an abnormal redox state) and many environmental factors promote oxidative stress, we have proposed a redox/methylation hypothesis for autism causation. The narrative herein describes the evolution of this hypothesis, which is essentially a series of linked discoveries about how the brain uniquely relies on oxidation and methylation to guide its development and to carry out its cognitive functions.
doi:10.7453/gahmj.2013.087
PMCID: PMC3865376  PMID: 24416710
Attention deficit hyperactivity disorder; ADHD; D4 dopamine receptor; epigenetic; glutathione; methylation; schizophrenia
2.  Potential Role of Selenoenzymes and Antioxidant Metabolism in relation to Autism Etiology and Pathology 
Autism Research and Treatment  2014;2014:164938.
Autism and autism spectrum disorders (ASDs) are behaviorally defined, but the biochemical pathogenesis of the underlying disease process remains uncharacterized. Studies indicate that antioxidant status is diminished in autistic subjects, suggesting its pathology is associated with augmented production of oxidative species and/or compromised antioxidant metabolism. This suggests ASD may result from defects in the metabolism of cellular antioxidants which maintain intracellular redox status by quenching reactive oxygen species (ROS). Selenium-dependent enzymes (selenoenzymes) are important in maintaining intercellular reducing conditions, particularly in the brain. Selenoenzymes are a family of ~25 genetically unique proteins, several of which have roles in preventing and reversing oxidative damage in brain and endocrine tissues. Since the brain's high rate of oxygen consumption is accompanied by high ROS production, selenoenzyme activities are particularly important in this tissue. Because selenoenzymes can be irreversibly inhibited by many electrophiles, exposure to these organic and inorganic agents can diminish selenoenzyme-dependent antioxidant functions. This can impair brain development, particularly via the adverse influence of oxidative stress on epigenetic regulation. Here we review the physiological roles of selenoproteins in relation to potential biochemical mechanisms of ASD etiology and pathology.
doi:10.1155/2014/164938
PMCID: PMC3966422  PMID: 24734177
3.  Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention 
Alcohol and other drugs of abuse, including psychostimulants and opioids, can induce epigenetic changes: a contributing factor for drug addiction, tolerance, and associated withdrawal symptoms. DNA methylation is a major epigenetic mechanism and it is one of more than 200 methylation reactions supported by methyl donor S-adenosylmethionine (SAM). Levels of SAM are controlled by cellular redox status via the folate and vitamin B12-dependent enzyme methionine synthase (MS). For example, under oxidative conditions MS is inhibited, diverting its substrate homocysteine (HCY) to the trans sulfuration pathway. Alcohol, dopamine, and morphine, can alter intracellular levels of glutathione (GSH)-based cellular redox status, subsequently affecting SAM levels and DNA methylation status. Here, existing evidence is presented in a coherent manner to propose a novel hypothesis implicating the involvement of redox-based epigenetic changes in drug addiction. Further, we discuss how a “gene priming” phenomenon can contribute to the maintenance of redox and methylation status homeostasis under various stimuli including drugs of abuse. Additionally, a new mechanistic rationale for the use of metabolic interventions/redox-replenishers as symptomatic treatment of alcohol and other drug addiction and associated withdrawal symptoms is also provided. Hence, the current review article strengthens the hypothesis that neuronal metabolism has a critical bidirectional coupling with epigenetic changes in drug addiction exemplified by the link between redox-based metabolic changes and resultant epigenetic consequences under the effect of drugs of abuse.
doi:10.3389/fnins.2014.00444
PMCID: PMC4302946  PMID: 25657617
glutathione; s-adenosylmethionine; EAAT3; drug addiction; withdrawal; gene priming; N-acetylcysteine
4.  Mercury Promotes Catecholamines Which Potentiate Mercurial Autoimmunity and Vasodilation: Implications for Inositol 1,4,5-Triphosphate 3-Kinase C Susceptibility in Kawasaki Syndrome 
Korean Circulation Journal  2013;43(9):581-591.
Previously, we reviewed biological evidence that mercury could induce autoimmunity and coronary arterial wall relaxation as observed in Kawasaki syndrome (KS) through its effects on calcium signaling, and that inositol 1,4,5-triphosphate 3-kinase C (ITPKC) susceptibility in KS would predispose patients to mercury by increasing Ca2+ release. Hg2+ sensitizes inositol 1,4,5-triphosphate (IP3) receptors at low doses, which release Ca2+ from intracellular stores in the sarcoplasmic reticulum, resulting in delayed, repetitive calcium influx. ITPKC prevents IP3 from triggering IP3 receptors to release calcium by converting IP3 to inositol 1,3,4,5-tetrakisphosphate. Defective IP3 phosphorylation resulting from reduced genetic expressions of ITPKC in KS would promote IP3, which increases Ca2+ release. Hg2+ increases catecholamine levels through the inhibition of S-adenosylmethionine and subsequently catechol-O-methyltransferase (COMT), while a single nucleotide polymorphism of the COMT gene (rs769224) was recently found to be significantly associated with the development of coronary artery lesions in KS. Accumulation of norepinephrine or epinephrine would potentiate Hg2+-induced calcium influx by increasing IP3 production and increasing the permeability of cardiac sarcolemma to Ca2+. Norepinephrine and epinephrine also promote the secretion of atrial natriuretic peptide, a potent vasodilator that suppresses the release of vasoconstrictors. Elevated catecholamine levels can induce hypertension and tachycardia, while increased arterial pressure and a rapid heart rate would promote arterial vasodilation and subsequent fatal thromboses, particularly in tandem. Genetic risk factors may explain why only a susceptible subset of children develops KS although mercury exposure from methylmercury in fish or thimerosal in pediatric vaccines is nearly ubiquitous. During the infantile acrodynia epidemic, only 1 in 500 children developed acrodynia whereas mercury exposure was very common due to the use of teething powders. This hypothesis mirrors the leading theory for KS in which a widespread infection only induces KS in susceptible children. Acrodynia can mimic the clinical picture of KS, leading to its inclusion in the differential diagnosis for KS. Catecholamine levels are often elevated in acrodynia and may also play a role in KS. We conclude that KS may be the acute febrile form of acrodynia.
doi:10.4070/kcj.2013.43.9.581
PMCID: PMC3808853  PMID: 24174958
Kawasaki syndrome; Catecholamines; Mercury; Autoimmunity
5.  Age-Dependent Decrease and Alternative Splicing of Methionine Synthase mRNA in Human Cerebral Cortex and an Accelerated Decrease in Autism 
PLoS ONE  2013;8(2):e56927.
The folate and vitamin B12-dependent enzyme methionine synthase (MS) is highly sensitive to cellular oxidative status, and lower MS activity increases production of the antioxidant glutathione, while simultaneously decreasing more than 200 methylation reactions, broadly affecting metabolic activity. MS mRNA levels in postmortem human cortex from subjects across the lifespan were measured and a dramatic progressive biphasic decrease of more than 400-fold from 28 weeks of gestation to 84 years was observed. Further analysis revealed alternative splicing of MS mRNA, including deletion of folate-binding domain exons and age-dependent deletion of exons from the cap domain, which protects vitamin B12 (cobalamin) from oxidation. Although three species of MS were evident at the protein level, corresponding to full-length and alternatively spliced mRNA transcripts, decreasing mRNA levels across the lifespan were not associated with significant changes in MS protein or methionine levels. MS mRNA levels were significantly lower in autistic subjects, especially at younger ages, and this decrease was replicated in cultured human neuronal cells by treatment with TNF-α, whose CSF levels are elevated in autism. These novel findings suggest that rather than serving as a housekeeping enzyme, MS has a broad and dynamic role in coordinating metabolism in the brain during development and aging. Factors adversely affecting MS activity, such as oxidative stress, can be a source of risk for neurological disorders across the lifespan via their impact on methylation reactions, including epigenetic regulation of gene expression.
doi:10.1371/journal.pone.0056927
PMCID: PMC3577685  PMID: 23437274
6.  Prenatal and Postnatal Epigenetic Programming: Implications for GI, Immune, and Neuronal Function in Autism 
Autism Research and Treatment  2012;2012:190930.
Although autism is first and foremost a disorder of the central nervous system, comorbid dysfunction of the gastrointestinal (GI) and immune systems is common, suggesting that all three systems may be affected by common molecular mechanisms. Substantial systemic deficits in the antioxidant glutathione and its precursor, cysteine, have been documented in autism in association with oxidative stress and impaired methylation. DNA and histone methylation provide epigenetic regulation of gene expression during prenatal and postnatal development. Prenatal epigenetic programming (PrEP) can be affected by the maternal metabolic and nutritional environment, whereas postnatal epigenetic programming (PEP) importantly depends upon nutritional support provided through the GI tract. Cysteine absorption from the GI tract is a crucial determinant of antioxidant capacity, and systemic deficits of glutathione and cysteine in autism are likely to reflect impaired cysteine absorption. Excitatory amino acid transporter 3 (EAAT3) provides cysteine uptake for GI epithelial, neuronal, and immune cells, and its activity is decreased during oxidative stress. Based upon these observations, we propose that neurodevelopmental, GI, and immune aspects of autism each reflect manifestations of inadequate antioxidant capacity, secondary to impaired cysteine uptake by the GI tract. Genetic and environmental factors that adversely affect antioxidant capacity can disrupt PrEP and/or PEP, increasing vulnerability to autism.
doi:10.1155/2012/190930
PMCID: PMC3420412  PMID: 22934169
7.  A macroepigenetic approach to identify factors responsible for the autism epidemic in the United States 
Clinical Epigenetics  2012;4(1):6.
The number of children ages 6 to 21 in the United States receiving special education services under the autism disability category increased 91% between 2005 to 2010 while the number of children receiving special education services overall declined by 5%. The demand for special education services continues to rise in disability categories associated with pervasive developmental disorders. Neurodevelopment can be adversely impacted when gene expression is altered by dietary transcription factors, such as zinc insufficiency or deficiency, or by exposure to toxic substances found in our environment, such as mercury or organophosphate pesticides. Gene expression patterns differ geographically between populations and within populations. Gene variants of paraoxonase-1 are associated with autism in North America, but not in Italy, indicating regional specificity in gene-environment interactions. In the current review, we utilize a novel macroepigenetic approach to compare variations in diet and toxic substance exposure between these two geographical populations to determine the likely factors responsible for the autism epidemic in the United States.
doi:10.1186/1868-7083-4-6
PMCID: PMC3378453  PMID: 22490277
Autism; DNA methylation; Environmental epigenetics; Heavy metals; HFCS; PON1; SAM; Zn
8.  Ethanol Lowers Glutathione in Rat Liver and Brain and Inhibits Methionine Synthase in a Cobalamin-dependent Manner 
Background
Methionine synthase (MS) is a ubiquitous enzyme that requires vitamin B12 (cobalamin) and 5-methyl-tetrahydrofolate for methylation of homocysteine to methionine. Previous studies have shown that acute or chronic ethanol (ETOH) administration results in inhibition of MS and depletion of glutathione (GSH), and it has been proposed that GSH is required for synthesis of methylcobalamin (MeCbl).
Methods
We measured GSH levels and investigated the ability of different cobalamin cofactors (cyano- (CNCbl), glutathionyl- (GSCbl), hydroxo- (OHCbl), and MeCbl) to support MS activity in liver and brain cortex from control and ETOH-treated rats.
Results
In control animals, MS activity was higher in liver than cortex for all cobalamins and MeCbl-based activity was higher than for other cofactors. S-Adenosylmethionine (SAM) was required for OHCbl, CNCbl, and GSCbl-based activity, but not for MeCbl. Feeding an ETOH-containing diet for four weeks caused a significant decrease in liver MS activity, in a cobalamin-dependent manner (OHCbl ≥ CNCbl > GSCbl > MeCbl). In brain cortex, OHCbl, CNCbl and GSCbl-based activity was reduced by ETOH treatment, but MeCbl-based activity was unaffected. GSH levels were reduced by ETOH treatment in both liver and cortex homogenates, and addition of GSH restored OHCbl-based MS activity to control levels. Betaine administration had no significant effect on GSH levels or MS activity in either control or ETOH-fed groups.
Conclusions
The ETOH-induced decrease in OHCbl-based MS activity is secondary to decreased GSH levels and a decreased ability to synthsize MeCbl. The ability of MeCbl to completely offset ETOH inhibition in brain cortex, but not liver, suggests tissue-specific differences in the GSH-dependent regulation of MS activity.
doi:10.1111/j.1530-0277.2010.01343.x
PMCID: PMC3058891  PMID: 21121936
Alcoholism; betaine; cirrhosis; methylation; vitamin B-12
9.  Role of a Redox-Based Methylation Switch in mRNA Life Cycle (Pre- and Post-Transcriptional Maturation) and Protein Turnover: Implications in Neurological Disorders 
Homeostatic synaptic scaling in response to neuronal stimulus or activation, and due to changes in cellular niche, is an important phenomenon for memory consolidation, retrieval, and other similar cognitive functions (Turrigiano and Nelson, 2004). Neurological disorders and cognitive disabilities in autism, Rett syndrome, schizophrenia, dementia, etc., are strongly correlated to alterations in protein expression (both synaptic and cytoplasmic; Cajigas et al., 2010). This correlation suggests that efficient temporal regulation of synaptic protein expression is important for synaptic plasticity. In addition, equilibrium between mRNA processing, protein translation, and protein turnover is a critical sensor/trigger for recording synaptic information, normal cognition, and behavior (Cajigas et al., 2010). Thus a regulatory switch, which controls the lifespan, maturation, and processing of mRNA, might influence cognition and adaptive behavior. Here, we propose a two part novel hypothesis that methylation might act as this suggested coordinating switch to critically regulate mRNA maturation at (1) the pre-transcription level, by regulating precursor-RNA processing into mRNA, via other non-coding RNAs and their influence on splicing phenomenon, and (2) the post-transcription level by modulating the regulatory functions of ribonucleoproteins and RNA binding proteins in mRNA translation, dendritic translocation as well as protein synthesis and synaptic turnover. DNA methylation changes are well recognized and highly correlated to gene expression levels as well as, learning and memory; however, RNA methylation changes are recently characterized and yet their functional implications are not established. This review article provides some insight on the intriguing consequences of changes in methylation levels on mRNA life-cycle. We also suggest that, since methylation is under the control of glutathione anti-oxidant levels (Lertratanangkoon et al., 1997), the redox status of neurons might be the central regulatory switch for methylation-based changes in mRNA processing, protein expression, and turnover. Lastly, we also describe experimental methods and techniques which might help researchers to evaluate the suggested hypothesis.
doi:10.3389/fnins.2012.00092
PMCID: PMC3382963  PMID: 22740813
alternative splicing; FMRP; glutathione; homeostatis; redox status; Rett syndrome; S-adenosylmethionine; synaptic scaling

Results 1-9 (9)