PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-9 (9)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
Document Types
1.  Barrett's Esophagus: Emerging Knowledge and Management Strategies 
The incidence of esophageal adenocarcinoma (EAC) has increased exponentially in the last 3 decades. Barrett's esophagus (BE) is the only known precursor of EAC. Patients with BE have a greater than 40 folds higher risk of EAC compared with the general population. Recent years have witnessed a revolution in the clinical and molecular research related to BE. However, several aspects of this condition remain controversial. Data regarding the true prevalence of BE have varied widely. Recent studies have suggested a lower incidence of EAC in nondysplastic BE (NDBE) than previously reported. There is paucity of prospective data showing a survival benefit of screening or surveillance for BE. Furthermore, the ever-increasing emphasis on healthcare cost containment has called for reexamination of the screening and surveillance strategies for BE. There is a need for identification of reliable clinical predictors or molecular biomarkers to risk-stratify patients who might benefit the most from screening or surveillance for BE. Finally, new therapies have emerged for the management of dysplastic BE. In this paper, we highlight the key areas of controversy and uncertainty surrounding BE. The paper discusses, in detail, the current literature about the molecular pathogenesis, biomarkers, histopathological diagnosis, and management strategies for BE.
doi:10.1155/2012/814146
PMCID: PMC3369502  PMID: 22701199
2.  Deletion of p120-catenin results in a tumor microenvironment with inflammation and cancer that establishes it as a tumor suppressor gene 
Cancer cell  2011;19(4):470-483.
Summary
P120ctn interacts with E-cadherin, but no formal proof that p120ctn functions as a bone fide tumor suppressor gene has emerged. We report herein that p120ctn loss leads to tumor development in mice. We have generated a conditional knockout model of p120ctn whereby mice develop pre-neoplastic and neoplastic lesions in the oral cavity, esophagus and squamous forestomach. Tumor derived cells secrete granulocyte macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-α (TNFα). The tumors contain significant desmoplasia and immune cell infiltration. Immature myeloid cells comprise a significant percentage of the immune cells present, and likely participate in fostering a favorable tumor microenvironment, including the activation of fibroblasts.
doi:10.1016/j.ccr.2011.02.007
PMCID: PMC3077713  PMID: 21481789
3.  Cox2 and β-Catenin/T-cell Factor Signaling Intestinalize Human Esophageal Keratinocytes When Cultured under Organotypic Conditions12 
Neoplasia (New York, N.Y.)  2011;13(9):792-805.
The incidence of esophageal adenocarcinoma (EAC) is rising in the United States. An important risk factor for EAC is the presence of Barrett esophagus (BE). BE is the replacement of normal squamous esophageal epithelium with a specialized columnar epithelium in response to chronic acid and bile reflux. However, the emergence of BE from squamous keratinocytes has not yet been demonstrated. Our research has focused on this. Wnt and cyclooxygenase 2 (Cox2) are two pathways whose activation has been associated with BE and progression to EAC, but their role has not been tested experimentally. To explore their contribution, we engineered a human esophageal keratinocyte cell line to express either a dominant-active Wnt effector CatCLef or a Cox2 complementary DNA. In a two-dimensional culture environment, Cox2 expression increases cell proliferation and migration, but neither transgene induces known BE markers. In contrast, when these cells were placed into three-dimensional organotypic culture conditions, we observed more profound effects. CatCLef-expressing cells were more proliferative, developed a thicker epithelium, and upregulated Notch signaling and several BE markers including NHE2. Cox2 expression also increased cell proliferation and induced a thicker epithelium. More importantly, we observed cysts form within the epithelium, filled with intestinal mucins including Muc5B and Muc17. This suggests that Cox2 expression in a three-dimensional culture environment induces a lineage of mucin-secreting cells and supports an important causal role for Cox2 in BE pathogenesis. We conclude that in vitro modeling of BE pathogenesis can be improved by enhancing Wnt signaling and Cox2 activity and using three-dimensional organotypic culture conditions.
PMCID: PMC3182272  PMID: 21969813
4.  EGFR and mutant p53 expand esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors 
Cancer research  2010;70(10):4174-4184.
Transforming growth factor (TGF)-β is a potent inducer of epithelial to mesenchymal transition (EMT). However, it remains elusive as to which molecular mechanisms determine the cellular capacity to undergo EMT in response to TGF-β. We have found that both epidermal growth factor receptor (EGFR) overexpression and mutant p53 tumor suppressor genes contribute to enrichment of an EMT-competent cellular subpopulation amongst telomerase-immortalized human esophageal epithelial cells during malignant transformation. EGFR overexpression triggers oncogene-induced senescence, accompanied by induction of cyclin dependent kinase inhibitors p15INK4B, p16INK4A and p21. Interestingly, a subpopulation of cells emerges by negating senescence without loss of EGFR overexpression. Such cell populations express increased levels of zinc finger E-box binding (ZEB) transcription factors ZEB1 and ZEB2, and undergo EMT upon TGF-β stimulation. Enrichment of EMT-competent cells was more evident in the presence of p53 mutation, which diminished EGFR-induced senescence. RNA interference directed against ZEB resulted in induction of p15INK4B and p16INK4A, reactivating the EGFR-dependent senescence program. Importantly, TGF-β-mediated EMT did not take place when cellular senescence programs were activated by either ZEB knockdown or activation of wild-type p53 function. Thus, senescence checkpoint functions activated by EGFR and p53 may be evaded through the induction of ZEB, thereby allowing expansion of an EMT-competent unique cellular subpopulation, providing novel mechanistic insights into the role of ZEB in esophageal carcinogenesis.
doi:10.1158/0008-5472.CAN-09-4614
PMCID: PMC3007622  PMID: 20424117
EGFR; EMT; senescence; ZEB1; ZEB2
5.  IGFBP-3 Regulates Esophageal Tumor Growth Through IGF-Dependent and Independent Mechanisms 
Cancer biology & therapy  2007;6(4):534-540.
Insulin-like growth factor binding protein (IGFBP)-3 exerts either proapoptotic or growth stimulatory effects depending upon the cellular context. IGFBP-3 is overexpressed frequently in esophageal cancer. Yet, the role of IGFBP-3 in esophageal tumor biology remains elusive. To delineate the functional consequences of IGFBP-3 overexpression, we stably transduced Ha-RasV12-transformed human esophageal cells with either wild-type or mutant IGFBP-3, the latter incapable of binding Insulin-like growth factor (IGFs) as a result of substitution of amino-terminal Ile56, Leu80, and Leu81 residues with Glycine residues. Wild-type, but not mutant, IGFBP-3 prevented IGF-I from activating the IGF-1 receptor and AKT, and suppressed anchorage-independent cell growth. When xenografted in nude mice, in vivo bioluminescence imaging demonstrated that wild-type, but not mutant IGFBP-3, abrogated tumor formation by the Ras-transformed cells with concurrent induction of apoptosis, implying a prosurvival effect of IGF in cancer cell adaptation to the microenvironment. Moreover, there was more aggressive tumor growth by mutant IGFBP-3 overexpressing cells than control cell tumors, without detectable caspase-3 cleavage in tumor tissues, indicating an IGF-independent growth stimulatory effect of mutant IGFBP-3. In aggregate, these data suggest that IGFBP-3 contributes to esophageal tumor development and progression through IGF-dependent and independent mechanisms.
PMCID: PMC2993006  PMID: 17457048
IGFBP-3; IGF; Ras; esophageal cancer; in vivo bioluminescence
6.  Akt is required for Stat5 activation and mammary differentiation 
Introduction
The Akt pathway plays a central role in regulating cell survival, proliferation and metabolism, and is one of the most commonly activated pathways in human cancer. A role for Akt in epithelial differentiation, however, has not been established. We previously reported that mice lacking Akt1, but not Akt2, exhibit a pronounced metabolic defect during late pregnancy and lactation that results from a failure to upregulate Glut1 as well as several lipid synthetic enzymes. Despite this metabolic defect, however, both Akt1-deficient and Akt2-deficient mice exhibit normal mammary epithelial differentiation and Stat5 activation.
Methods
In light of the overlapping functions of Akt family members, we considered the possibility that Akt may play an essential role in regulating mammary epithelial development that is not evident in Akt1-deficient mice due to compensation by other Akt isoforms. To address this possibility, we interbred mice bearing targeted deletions in Akt1 and Akt2 and determined the effect on mammary differentiation during pregnancy and lactation.
Results
Deletion of one allele of Akt2 in Akt1-deficient mice resulted in a severe defect in Stat5 activation during late pregnancy that was accompanied by a global failure of terminal mammary epithelial cell differentiation, as manifested by the near-complete loss in production of the three principal components of milk: lactose, lipid, and milk proteins. This defect was due, in part, to a failure of pregnant Akt1-/-;Akt2+/- mice to upregulate the positive regulator of Prlr-Jak-Stat5 signaling, Id2, or to downregulate the negative regulators of Prlr-Jak-Stat5 signaling, caveolin-1 and Socs2.
Conclusions
Our findings demonstrate an unexpected requirement for Akt in Prlr-Jak-Stat5 signaling and establish Akt as an essential central regulator of mammary epithelial differentiation and lactation.
doi:10.1186/bcr2640
PMCID: PMC3096959  PMID: 20849614
7.  A subpopulation of mouse esophageal basal cells has properties of stem cells with the capacity for self-renewal and lineage specification 
The Journal of Clinical Investigation  2008;118(12):3860-3869.
The esophageal epithelium is a prototypical stratified squamous epithelium that exhibits an exquisite equilibrium between proliferation and differentiation. After basal cells proliferate, they migrate outward toward the luminal surface, undergo differentiation, and eventually slough due to apoptosis. The identification and characterization of stem cells responsible for the maintenance of the esophageal epithelium remains elusive. Here, we employed Hoechst dye extrusion and BrdU label–retaining assays to identify in mice a potential esophageal stem cell population that localizes to the basal cell compartment. The self-renewing capacity of this population was characterized using a clonogenic assay and a 3D organotypic culture model. The putative esophageal stem cells were also capable of epithelial reconstitution in vivo in direct esophageal epithelial injury models. In both the 3D organotypic culture and direct mucosal injury models, the putative stem cells gave rise to undifferentiated and differentiated cells. These studies therefore provide a basis for understanding the regenerative capacity and biology of the esophageal epithelium when it is faced with injurious insults.
doi:10.1172/JCI35012
PMCID: PMC2579884  PMID: 19033657
8.  Cdx1 and c-Myc Foster the Initiation of Transdifferentiation of the Normal Esophageal Squamous Epithelium toward Barrett's Esophagus 
PLoS ONE  2008;3(10):e3534.
Background
Barrett's esophagus is a premalignant condition whereby the normal stratified squamous esophageal epithelium undergoes a transdifferentiation program resulting in a simple columnar epithelium reminiscent of the small intestine. These changes are typically associated with the stratified squamous epithelium chronically exposed to acid and bile salts as a result of gastroesophageal reflux disease (GERD). Despite this well-defined epidemiologic association between acid reflux and Barrett's esophagus, the genetic changes that induce this transdifferentiation process in esophageal keratinocytes have remained undefined.
Methodology/Principal Findings
To begin to identify the genetic changes responsible for transdifferentiaiton in Barrett's esophagus, we performed a microarray analysis of normal esophageal, Barrett's esophagus and small intestinal biopsy specimens to identify candidate signaling pathways and transcription factors that may be involved. Through this screen we identified the Cdx1 homeodomain transcription factor and the c-myc pathway as possible candidates. Cdx1 and c-myc were then tested for their ability to induce transdifferentiation in immortalized human esophageal keratinocytes using organotypic culturing methods. Analyses of these cultures reveal that c-myc and cdx1 cooperate to induce mucin production and changes in keratin expression that are observed in the epithelium of Barrett's esophagus.
Conclusions/Significance
These data demonstrate the ability of Cdx1 and c-myc to initiate the earliest stages of transdifferentiation of esophageal keratinocytes toward a cell fate characteristic of Barrett's esophagus.
doi:10.1371/journal.pone.0003534
PMCID: PMC2568822  PMID: 18953412
9.  SOX2 Is an Amplified Lineage Survival Oncogene in Lung and Esophageal Squamous Cell Carcinomas 
Nature genetics  2009;41(11):1238-1242.
Lineage survival oncogenes are activated by somatic DNA alterations in cancers arising from the cell lineages in which these genes play a role in normal development.1,2 Here we show that a peak of genomic amplification on chromosome 3q26.33, found in squamous cell carcinomas (SCCs) of the lung and esophagus, contains the transcription factor gene SOX2—which is mutated in hereditary human esophageal malformations3 and necessary for normal esophageal squamous development4, promotes differentiation and proliferation of basal tracheal cells5 and co-operates in induction of pluripotent stem cells.6,7,8 SOX2 expression is required for proliferation and anchorage-independent growth of lung and esophageal cell lines, as shown by RNA interference experiments. Furthermore, ectopic expression of SOX2 cooperated with FOXE1 or FGFR2 to transform immortalized tracheobronchial epithelial cells. SOX2-driven tumors show expression of markers of both squamous differentiation and pluripotency. These observations identify SOX2 as a novel lineage survival oncogene in lung and esophageal SCC.
doi:10.1038/ng.465
PMCID: PMC2783775  PMID: 19801978

Results 1-9 (9)