PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-2 (2)
 

Clipboard (0)
None

Select a Filter Below

Journals
Authors
more »
Year of Publication
Document Types
1.  Modulation of pathogen-induced CCL20 secretion from HT-29 human intestinal epithelial cells by commensal bacteria 
BMC Immunology  2009;10:54.
Background
Human intestinal epithelial cells (IECs) secrete the chemokine CCL20 in response to infection by various enteropathogenic bacteria or exposure to bacterial flagellin. CCL20 recruits immature dendritic cells and lymphocytes to target sites. Here we investigated IEC responses to various pathogenic and commensal bacteria as well as the modulatory effects of commensal bacteria on pathogen-induced CCL20 secretion. HT-29 human IECs were incubated with commensal bacteria (Bifidobacterium infantis or Lactobacillus salivarius), or with Salmonella typhimurium, its flagellin, Clostridium difficile, Mycobacterium paratuberculosis, or Mycobacterium smegmatis for varying times. In some studies, HT-29 cells were pre-treated with a commensal strain for 2 hr prior to infection or flagellin stimulation. CCL20 and interleukin (IL)-8 secretion and nuclear factor (NF)-κB activation were measured using enzyme-linked immunosorbent assays.
Results
Compared to untreated cells, S. typhimurium, C. difficile, M. paratuberculosis, and flagellin activated NF-κB and stimulated significant secretion of CCL20 and IL-8 by HT-29 cells. Conversely, B. infantis, L. salivarius or M. smegmatis did not activate NF-κB or augment CCL20 or IL-8 production. Treatment with B. infantis, but not L. salivarius, dose-dependently inhibited the baseline secretion of CCL20. In cells pre-treated with B. infantis, C. difficile-, S. typhimurium-, and flagellin-induced CCL20 were significantly attenuated. B. infantis did not limit M. Paratuberculosis-induced CCL20 secretion.
Conclusion
This study is the first to demonstrate that a commensal strain can attenuate CCL20 secretion in HT-29 IECs. Collectively, the data indicate that M. paratuberculosis may mediate mucosal damage and that B. infantis can exert immunomodulatory effects on IECs that mediate host responses to flagellin and flagellated enteric pathogens.
doi:10.1186/1471-2172-10-54
PMCID: PMC2763856  PMID: 19814810
2.  Comparative and Functional Analysis of Sortase-Dependent Proteins in the Predicted Secretome of Lactobacillus salivarius UCC118†  
Surface proteins are important factors in the interaction of probiotic and pathogenic bacteria with their environment or host. We performed a comparative bioinformatic analysis of four publicly available Lactobacillus genomes and the genome of Lactobacillus salivarius subsp. salivarius strain UCC118 to identify secreted proteins and those linked to the cell wall. Proteins were identified which were predicted to be anchored by WXL-binding domains, N- or C-terminal anchors, GW repeats, lipoprotein anchors, or LysM-binding domains. We identified 10 sortase-dependent surface proteins in L. salivarius UCC118, including three which are homologous to mucus-binding proteins (LSL_0152, LSL_0311, and LSL_1335), a collagen-binding protein homologue (LSL_2020b), two hypothetical proteins (LSL_1838 and LSL_1902b), an enterococcal surface protein homologue (LSL_1085), a salivary agglutinin-binding homologue (LSL_1832b), an epithelial binding protein homologue (LSL_1319), and a proteinase homologue (LSL_1774b). However, two of the genes are gene fragments and four are pseudogenes, suggesting a lack of selection for their function. Two of the 10 genes were not transcribed in vitro, and 1 gene showed a 10-fold increase in transcript level in stationary phase compared to logarithmic phase. The sortase gene was deleted, and three genes encoding sortase-dependent proteins were disrupted. The sortase mutant and one sortase-dependent protein (mucus-binding homologue) mutant showed a significant reduction in adherence to human epithelial cell lines. The genome-wide investigation of surface proteins can thus help our understanding of their roles in host interaction.
doi:10.1128/AEM.03023-05
PMCID: PMC1489637  PMID: 16751526

Results 1-2 (2)